

IMPLEMENTATION OF AN AUTOMATED IMAGE PROCESSING
SYSTEM FOR OBSERVING THE ACTIVITIES OF HONEY BEES

A Thesis
by

AHMAD GHADIRI

Submitted to the Graduate School
 at Appalachian State University

in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE

August 2013
Department of Computer Science

IMPLEMENTATION OF AN AUTOMATED IMAGE PROCESSING
SYSTEM FOR OBSERVING THE ACTIVITIES OF HONEY BEES

A Thesis
by

AHMAD GHADIRI
August 2013

APPROVED BY:

Rahman Tashakkori
Chairperson, Thesis Committee

E. Frank Barry
Member, Thesis Committee

James T. Wilkes
Member, Thesis Committee

James T. Wilkes
Chairperson, Department of Computer Science

Edelma D. Huntley
Dean, Cratis Williams Graduate School

Copyright by Ahmad Ghadiri 2013
All Rights Reserved

iv

Abstract

IMPLEMENTATION OF AN AUTOMATED IMAGE PROCESSING
SYSTEM FOR OBSERVING THE ACTIVITIES OF HONEY BEES

Ahmad Ghadiri

B.Sc., Isfahan University of Technology
M.S., Appalachian State University

Chairperson: Rahman Tashakkori

Honey bees are responsible for more than half of the pollination across the world, hence

they have a very important role in agriculture. In recent years, the number of honey bees have

declined due to the Colony Collapse Disorder (CCD), which may be due to possible causes

that include climate change and pollution. A large number of bee researchers believe that

climate change can have a significant effect on honey bees [BeesFree Inc. 2012].

Honey bees fly around to pollinate the flowers, fruits, and plants and to collect pollen

and nectar for their own use. For a pound of honey, honey bees fly over 55000 miles [York

County Beekeepers’ Association 2011]. Since honey bees start from their hives to go for

pollination, their activities around the hive can be used as a good indicator of their health. The

beehive’s health status and the activities of honey bees can be related to the environment in

which they live. As such, local weather data need to be gathered and correlated to the level of

bee activities in front of their hives. In this thesis, an automated system is designed and

implemented using computer science techniques for data acquisition. The system utilizes

v

image processing techniques to extract data from the videos taken in front or at the top of the

hive’s entrance. Several web-based applications are used to obtain temperature and humidity

data from the National Weather Service to supplement the data that are collected at the hive

locally. All the weather data and those extracted from the images are stored in a MySQL

database for analysis and accessed by an iPhone App that is designed as part of this research.

vi

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my adviser, Dr.

Rahman Tashakkori, for his continuous support of my M.S. study and research. I am thankful

for his patience, motivation, enthusiasm, and immense knowledge. His guidance has been very

valuable to me throughout my research and writing of this thesis. I cannot imagine having a

better advisor and mentor for my Master’s study.

I would also like to thank the rest of my thesis committee: Dr. James Wilkes and

Professor Frank Barry, for their encouragement, insightful comments, and valuable advice.

I would also like to thank all the faculty and staff of the department of computer

science, who throughout my Master’s degree have supported and encouraged me to believe in

my abilities. They have directed me through numerous challenges allowing me to accomplish

my goals.

I would like to thank my family for never ceasing to believe in me. Their continued

encouragement has helped me to pursue my dreams and goals. Without my family’s love and

presence success would have been meaningless.

Finally, I would like to thank my peers and friends for helping me through my Master’s

study and for allowing me to have fun with them in the last two years.

vii

Table of Contents

Abstract………………… .. iv

Acknowledgments.. vi

CHAPTER 1 INTRODUCTION ..1

1.1 Background ..1

1.2 Image Processing ..1

1.3 Overview of the Research ..2

1.4 Thesis Organization ..3

CHAPTER 2 RELATED WORK ...5

CHAPTER 3 IMAGE PROCESSING ...10

3.1 Introduction ..10

3.2 Image Enhancement ...10

3.2.1 Image Negatives ...11

3.2.2 Log Transformation ..12

3.2.3 Power-law Transformations ...12

3.2.4 Piecewise-linear Transformation ..13

3.3 Image Histogram Processing ..15

3.3.1 Image Subtraction ..16

3.3.2 Image Averaging ..16

3.4 Image Filters ...16

3.4.1 Smoothing Spatial Filters ...17

3.4.2 Sharpening Spatial Filters ..17

3.5 Frequency Domain Enhancements ...18

3.5.1 Notch Filter ..19

3.5.2 Low-pass and High-pass Filters ...19

3.6 Image Segmentation ...20

3.6.1 Thresholding ...20

3.6.2 Edge Detection ...21

viii

3.6.3 Region-growing Methods ...21

3.6.4 Split-and-merge Method ..22

3.7 Optical Character Recognition ...23

3.8 Identifying and Counting Bees ...24

3.8.1 Change Detection ...24

3.9 Counting Methods ..28

3.10 SNR and Entropy ...31

CHAPTER 4 EXTRACTION OF DATA FROM IMAGES ..33

4.1 Introduction ..33

4.2 Timestamp Extraction ..34

4.3 Segmentation of the Timestamp from Images ...35

4.4 Separating the Digits ..37

4.5 Recognition of Digits ...40

CHAPTER 5 IDENTIFYING AND COUNTING BEES ..43

5.1 Introduction ..43

5.2 Detecting Bees ..44

5.2.1 Illumination Invariant Change Detection ...47

5.2.2 Implementation of Illumination Invariant Change Detection49

5.3 Counting Honey Bees...51

CHAPTER 6 THE IMAGE ACQUISITION AND DATA MANAGEMENT
SYSTEM 53

6.1 Introduction ..53

6.2 Video Recording ..53

6.3 Extracting Image Frames from Videos ..55

6.4 Storing Individual Images ..56

6.5 Image Processing on the Server ...57

6.6 Weather Data Gathering ...60

6.7 Storing the Weather and Image Data in the Database61

6.8 The iPhone Application ..62

CHAPTER 7 RESULTS ...65

7.1 Introduction ..65

7.2 Background Images ..65

7.3 Time Extraction ..68

7.4 Temperature, Humidity, and Number of Bees ...69

ix

7.5 Estimated Number of Bees, SNR, and Entropy72

7.6 Change Detection Algorithm Results ...77

CHAPTER 8 CONCLUSION AND FUTURE WORK ...80

8.1 Background ..80

8.2 Time Extraction ..81

8.3 Temperature, Humidity, and Number of Bees ...81

8.4 Change Detection Results ..82

8.5 Future Work ...83

Bibliography……………………………………………………………..85

Appendix…………………………………………………………………….90

Vita………………………………… ...91

1

CHAPTER 1 INTRODUCTION

1.1 Background

Studying the behavior of honey bees is not new [Von Frisch 1993], and several studies

have been conducted using computer science techniques [Campbell et al. 2005; Apiservices

2007; Lundie 1925; Pham-Delègue et al. 2002]. Most of the recent honey bee research studies

have been conducted to determine the cause of the decline in the number of honey bees around

the world [Ellis et al. 2010]. Several research projects attempted to automate the process of

studying the honey bees [Campbell et al. 2008; Campbell et al. 2005; Estivill-Castro et al.

2003]. Although some of these studies have made some progress in automating the process,

the research is still ongoing and requires significant improvement. Some of these research

studies will be described in more detail in Chapter 2.

1.2 Image Processing

In computer science, image processing refers to any form of signal processing for which

the input is an image.

An image may be defined as a two-dimensional function ݂ሺݔ, are ݕ and ݔ where	ሻ,ݕ

spatial (plane) coordinates, and the amplitude of ݂ at any pair of coordinates ሺݔ, ሻ is theݕ

intensity or gray level of the image at that point. When ݕ ,ݔ, and the amplitude values of ݂ are

all finite and discrete quantities, the image is called a digital image. The field of digital image

processing refers to processing digital images using a computer. Image processing usually

2

refers to digital image processing, but optical and analog image processing are also possible

[Gonzalez and Woods 2001].

The most important requirement for image processing is that the image be available in

a digitized form, i.e., containing a finite number of binary words. For digitization, the given

image is sampled on a discrete grid and each sample or pixel is quantized using a finite number

of bits. The digitized image then can be processed by a computer. To display a digital image,

it is first converted back into an analog signal, and then scanned onto a display.

Image processing is closely related to computer vision. Computer vision is often

considered a high-level form of image processing when a computer attempts to decipher the

physical contents of an image or a sequence of images (e.g., videos or 3D full-body magnetic

resonance scans).

Digital processing techniques help in the manipulation of the digital images using

computers. The raw data from imaging sensors may contain deficiencies, to correct these flaws

and obtain accurate data, the image must undergo several phases of processing. The three

general phases that all types of data must undergo during digital processing are: pre-processing,

enhancement and display, and information extraction.

1.3 Overview of the Research

This thesis provides details on the design and implementation of a fully automated

system for observing the activities of honey bees. To monitor and observe the activities of

honey bees, a camera is placed in front of the beehive or above it to record their movements

during the day. The video is transferred to a server and converted into image frames. The goal

is to track the activities of bees in front of a beehive. To achieve this goal, this research finds

an estimation of number of bees in front of the beehive on each image frame at any given time.

3

This thesis uses the illumination-invariant change detection algorithm developed by

Durucan and Ebrahimi [2000] to estimate the number of bees in an image. This algorithm

decreases the effect of changes in illumination caused by the natural environment. The main

source of such changes is the sun and its location in the sky, which produces various changes

in illumination of the scene. Also, the light in the scene makes shadows of the honey bees that

can be mistaken with the real bees in an image. Other sources of changes in the scene include

rain, clouds, and wind.

The automated system developed as part of this thesis also collects data related to the

local weather, which can be compared with the movements of bees. The local temperature and

humidity data are obtained hourly from the National Weather Service website [NOAA 2013].

An iPhone application is also designed and implemented to make accessing the data from the

server more convenient.

1.4 Thesis Organization

This research implements an automated system for observing and monitoring the

activities of honey bees. This system extracts different data from images of beehives using

image processing techniques and combines the data with the local weather data fetched from

the National Weather Service. The system can be used to observe the honey bees’ activities for

a long period of time. Other parameters can be embedded into the system to provide additional

information.

The related work that have been conducted to observe the behavior of honey bees are

described briefly in Chapter 2. Chapter 3 explains some basic concepts in image processing as

well as different techniques that have been used in this research. Chapters 4, 5, and 6 cover the

methodology and implementation of the system designed for this thesis. Chapter 4 explains

4

methods used to extract the time and date information from images. Chapter 5 covers the details

of image processing techniques that are used to estimate the number of honey bees in an image.

Chapter 6 explains the implementation of various parts of system for automating the process

and storing data. Chapter 7 summarizes results of this research. Chapter 8 contains a discussion

on the results of the research and the effects of different parameters on the results.

5

CHAPTER 2 RELATED WORK

Apiculture has been in decline across the world over recent decades, as is shown by the

decreasing numbers of managed honey bee colonies [Ellis et al. 2010; Neumann and Carreck

2010; Potts et al. 2010]. The decline is mainly attributed to various factors such as bacteria and

viruses, therefore it is crucial to observe, study, and understand honey bees’ behavior as a way

to determine their health. Several research studies that applied different methods have been

conducted to study bees [Campbell et al. 2005; Apiservices 2007; Lundie 1925; Pham-Delègue

et al. 2002]. Among these research studies are several that have used computer science

techniques to study bees and to automate the analysis process. One of the main computer

science techniques used for studying bees is image processing in which videos or images of

beehives are used in the analyses. These studies usually use a camera to capture videos of bees

inside or outside the beehives. The videos are then processed using image processing

techniques to observe the activities of bees. This chapter provides a summary of such work.

To study the effect of honey bees on the pollination process, the research by Estivill-

Castro et al. [2003] places a camera in a macadamia orchard to capture the movement of bees

around a macadamia tree. Although this method can track the bees, it intensifies the effect of

wind and shaking of the scene, which leads to detecting movements of surrounding flowers as

bees. To resolve this problem, a simple solution is to place the camera in front of the beehive,

which has two advantages over the method used by Estivill-Castro et al. [2003]; the first

advantage is that the movement of all the honey bees is captured by the camera, and the second

6

advantage is that the effect of shaking of flowers in the scene due to wind is significantly

reduced.

The small size of the bees in images and their quick movements, makes it challenging

to use pattern recognition techniques to detect them; hence a change detection technique is

used to track the honey bees. Estivill-Castro et al. [2003] use a simplified difference method

to produce the changes between two images. As a result of the change detection technique, a

mask is created that is used as a base for color projection to find the bees. Although this method

works for a clear background, when the background consists of flowers and is not clear, its

accuracy drops significantly. Also, this method does not address the changes in illumination.

Unlike Estivill-Castro et al. [2003], Campbell et al. [2008] place the camera at the top

of the beehive. This method reduces wind related object movement in the scene as the camera

installed above the entrance of the beehive does not shake much. This camera captures the bees

while they enter or leave the beehive. Since the camera is placed at a distance from the entrance

of the beehive, it does not affect the bees’ normal living conditions; however, the distance

between the camera and the beehive entrance makes the detection of bees in the image more

challenging.

To make the tracking process easier, Campbell et al. [2008] divide the motion of the

bees in four different types: loitering, crawling, flying out, and flying in. This classification

makes the tracking process easier, since the system can predict the next movement of a bee

according to the most recent motion type. For example, if a bee is detected as a flying in bee,

the system can predict that in the next frame this bee must be closer to the beehive and in the

same state as before.

7

To detect bees, the technique also uses a change detection method where an adaptive

background subtraction is applied to the images to separate bees from the background. The

background is obtained by taking the average of 300 recent video frames. Although this is a

good approximation of the background, it makes the process very slow. As a possibility to

make the process faster, a smaller number of frames could be used to make the background.

To detect the bees, Campbell et al. [2008] use a change detection method. The change

detection method is accurate in detecting the bees; however the color of beehive box changes

over time and makes the tracking the bees less accurate. Similar to the method presented by

Estivill-Castro et al. [2003], this method does not account for any illumination changes in the

environment which reduces its accuracy.

The research presented by Campbell et al. [2008] tracks the bees using maximum

weighted bipartite graph matching. Each bee that is detected in a frame is modeled as a node

in a graph. The weight is modeled as the likelihood that a bee with a position in an arbitrary

frame i goes to frame i+1. This method works 79% of the time on the annotated dataset.

The research presented by Knauer et al. [2005] uses image processing techniques to

study the honey bees in a different way. Unlike the previous research studies that use a camera

outside the beehive, this research uses a camera inside the hive and uses image processing

techniques to detect the bees’ hygiene based on the number of mites developing on the bees’

brood. Since the camera is installed inside the beehive, the changes in illumination and weather

have very little effects on the video quality and illumination.

To find the bees’ hygiene, first the uncapped cells in the honey comb should be

detected. In the next step a backward process is applied to find the bee(s) that started the

process of uncapping the cell. The challenge for this method arises from the number of bees

8

that block the cells, making it difficult to see inside the cells. To resolve this issue, a static

background model is used. Since the camera is installed inside the beehive where illumination

does not change as often, using one or more static backgrounds for different hours of the day

produces reasonable results.

The method that is used to detect uncapped cells by Knauer et al. [2005] is based on

the gray level of the image, which is used to make a binary image by applying a threshold.

Two algorithms are applied to the image: first the Canny Edge Detection [Canny 1986]

algorithm is applied to find all the edges in the binary image and then the Teh-Chin Chain

Approximation Algorithm [Teh and Chin 1989] is used to find the circular shape contours. The

algorithm first finds the center of the contour by finding the average of all the points in the

contour and then calculating the probability of the contour being an uncapped cell. This method

is efficient and provides reasonable accuracy. The drawback of this method is that the static

background model cannot be used in an outdoor environment considering the changes in

illumination.

Another research that has been conducted in Japan, Kimura et al. [2006] is similar to

that of Knauer et al. [2005] and emphasizes the detection and tracking of honey bees. In this

study, a camera is placed in front of a beehive similar to the method used by Knauer et al.

[2005] to track the bees. A vector quantization method is used to separate the background and

objects in the scene. Following this step, a classification algorithm is applied to the objects to

find the objects candidate for bees’ bodies. This step is followed by an identification of bees

and tracking them in the images.

The method explained above can detect 73% of individual bees and track them in 400

images. Although this is a reasonable result, it cannot be used to track the bees outside the

9

beehive. The reason is that the movement of bees inside and near the hive is slower than outside

and the camera can capture the bees in the consecutive frames. Outside the beehive the

movement of the bees is faster, thus regular cameras cannot capture the bees in the consecutive

frames. This makes it infeasible to track bees in the video frames.

In the final research discussed in this review [Arbuckle et al. 2001], image processing

is used to automate the identification process of different species of bees. An automated system

was designed to identify the bees’ specimen. Since there are more than 40,000 different species

of bees, with less than one hundred experts around the world who can correctly identify their

species, it seems vital to design such a system. To identify bees, Arbuckle et al. [2001] uses

the venation or vein pattern on the wing of bees. This identification system is available via

Internet, so one can submit an image from a bee’s wing to find the species of the bee.

As explained in this chapter, various research have been conducted on bees for different

purposes. However very little, if any, research has been conducted to correlate the activities of

honey bees and the local weather parameters such as temperature and humidity. This research

aims to design an automated system for observing and monitoring the activities of bees and

the effects of local weather data changes on their behavior.

10

CHAPTER 3 IMAGE PROCESSING

3.1 Introduction

One of the goals of this research is to find the relationship between local weather data

and activities of honey bees. For this purpose, the activity of honey bees is monitored

continuously over a period of time. To monitor the activities of honey bees, a camera records

videos from beehive. The videos received from the camera are broken into the individual image

frames. Each image frame contains a timestamp at which the frame is captured. The time stamp

is used to distinguish the images of the beehive at different times. In our research, a challenge

was to extract the time and date from the images and to store them in the database along with

the corresponding images. The steps involved in processing the individual images will be

described in this chapter.

3.2 Image Enhancement

In every digital image processing analysis, the first step is very likely applying filters

and enhancing images. Image enhancement adjusts the digital images such that they are

suitable for further processing. For example, the enhancement process may make an image

brighter or darker depending on the quality of the image and the desirable outcome. Most of

the images taken by digital cameras contain some unwanted information that is referred to as

noise. The goal of image enhancement is to reduce or eliminate the noise level inside the image.

11

Most image enhancement techniques are applied on the gray-scale images. Gray-scale

images in 8-bit format have pixels with intensity values between 0 and 255 for each pixel. In

such a gray-scale image, intensity value 0 represents black and 255 represents white. To

enhance color images in RGB format, the target images are often converted to gray-scale first

and then image enhancement techniques are applied.

The enhancement methods fall into two broad categories:

 Spatial Domain Methods

 Frequency Domain Methods

Spatial domain methods process the image directly using the intensity value of pixels

in the gray level image. On the other hand, the frequency domain methods first transfer the

image into frequency domain by applying the Fourier Transform on the image. After

completion of analyses in the frequency domain, the image is transferred to image space by

applying the Inverse Fourier Transform. Some of the branches of these two main categories of

image enhancement will be explained in the following sections.

3.2.1 Image Negatives

The negative of a gray-scale image is obtained by subtracting the intensity values of

each pixel from the maximum possible intensity value on that image. For example, in an 8-bit

image the maximum possible value for a pixel is 255, which represents the white color on the

image [Gonzalez and Woods 2001]. In a more general form, when the intensity values are in

the ሾ0, ܮ െ 1ሿ range, the negative transformation is obtained as in 3.1.

ݏ ൌ ܮ െ 1 െ (3.1) ,ݎ

12

where ݎ represents the original intensity value and ݏ is the inverted intensity, i.e., the

transformed value. Image negative technique is suitable for enhancing details embedded in the

dark regions of an image [Gonzalez and Woods 2001].

3.2.2 Log Transformation

Another method of image enhancement is the Log Transformation. The general form

of the Log Transformation is shown in 3.2 [Jain et al. 1995].

ݏ ൌ ܿ ൈ logሺݎ ൅ 1ሻ, (3.2)

where ܿ is a constant and ݎ ൒ 0 represents the intensity value of the original image. The Log

Transformation maps a narrow range of low input gray values into a wider range of output

values. The inverse of the Log Transformation does the exact opposite. This transformation is

useful in cases where the image has a large dynamic range of values such as those seen in a

Fourier spectrum.

3.2.3 Power-law Transformations

The Power-law Transformation can have the basic form as in 3.3 [Gonzalez and Woods

2001].

 s ൌ c ൈ ఊ, (3.3)ݎ

where ܿ and ߛ are positive constants. Sometimes this equation is written as presented in 3.4 to

account for an offset, ߝ [Gonzalez and Woods 2001].

ݏ ൌ ܿ ൈ ሺݎ ൅ ሻఊ. (3.4)ߝ

By convention, the exponent part is represented by gamma, hence in some literature

this transformation is also referred to as the gamma correction. In addition to correcting the

gamma factor, the Power-law Transformation is useful for general purpose contrast

manipulation. By applying the Power-law Transformation, the visibility of details can be

13

Figure 3.1: (a) Aerial image. (b)- (d) Results of applying power law
transformation [Gonzalez and Woods 2001]

changed in an image. For example, in an image of a city taken from an airplane, some details

may not be visible. However, by applying a gamma correction with a gamma value greater

than 1, significant details can be revealed in the image, as shown in Figure 3.1.

(a) (b)

(c) (d)

3.2.4 Piecewise-linear Transformation

Piecewise-linear Transformation is another method for image enhancement. The

advantage of this method is that the form of piecewise function can be arbitrarily complex. A

drawback of this method is that it requires a large number of inputs from the user to create the

piecewise function.

14

There are different types of piecewise functions. Some of the most common ones are:

 Contrast stretching

 Gray level slicing

 Bit-plane slicing

One of the simplest functions of the Piecewise-linear Transformations is contrast

stretching. Contrast Stretching Transformations increase the contrast between the darks and

the lights in an image. In more general fields of data processing, such as digital signal

processing, this transformation is referred to as dynamic range expansion. The purpose of

dynamic range expansion in various applications is usually to bring the image or other type of

signal into a range that is more familiar or normal to the senses. For example, a newspaper will

strive to make all of the images in an issue share a similar range of grayscale [Gonzalez and

Woods 2001].

For cases in which there is a need to highlight a specific range of gray level in an image,

gray level slicing is being used. Applications of gray level slicing include enhancing features

such as masses of water in satellite imagery and enhancing flaws in X-ray images. There are

two basic themes of doing gray slicing. One approach is to display a high value for the range

of interest and a low value for other pixels. The second approach is to display a high value for

the range of interest, but preserve the other pixels [Gonzalez and Woods 2001]. Depending on

the application, one of the approaches or the combination of these approaches can be used.

 Given an image with X-bit gray level pixel value, slicing an image at different bit

planes play an important role in image processing. An application of bit plane slicing is in the

data compression [Jordan and Lotufo 1997]. If the pixels of an image are represented by 8-bit

values, the image can be sliced in 8 different bit planes. The planes range from 0 to 7, where

15

the 0 plane represents the least significant bit and the 7 plane represents the most significant

bit [Gonzalez and Woods 2001].

3.3 Image Histogram Processing

Given an image with pixel values in the range of	ሾ0, ܮ െ 1ሿ, the histogram of the image

is a discrete function defined as in equation 3.5.

 ݄ሺݎ௞ሻ ൌ ݊௞, (3.5)

where ݎ௞ is the ݇௧௛ gray level and ݊௞ is the number of pixels in the image with gray level ݎ௞.

A normalized histogram is given by ݌ሺݎ௞ሻ ൌ 	
݊௞ ݊ൗ , where ݊	is the number of pixels in the

image [Gonzalez and Woods 2001]. Histogram of an image is the base for many spatial domain

processing and enhancement methods.

Two common categories of image histogram processing are:

 Histogram Equalization

 Histogram Matching (Specification)

Histogram equalization is a contrast adjustment technique that uses the image's

histogram. This method usually increases the global contrast of an image, especially when the

usable data of the image are represented by close contrast values. Through this adjustment, the

intensities can be better distributed on the histogram. This allows for areas of lower local

contrast to gain a higher contrast. Histogram equalization accomplishes this by effectively

spreading out the most frequent intensity values [Laughlin 1981].

Histogram matching is a process where a time series, image, or higher dimension scalar

data are modified such that its histogram matches that of another (reference) dataset. A

common application is to match the images from two sensors with slightly different responses

or from a sensor whose response changes over time [Laughlin 1981].

16

Other enhancement methods that are widely used in image processing use arithmetic

or logic operations. In the following sections some of these methods will be briefly introduced.

3.3.1 Image Subtraction

This method computes the difference between the corresponding pixels on two similar

size images as shown in 3.6.

 ݃ሺݔ, ሻݕ ൌ ݂ሺݔ, ሻݕ െ ݄ሺݔ, ሻ, (3.6)ݕ

where ݂ ሺݔ, ݄ ሻ, andݕ ሺݔ, ݂ ሻ are corresponding pixel values in the matricesݕ and ݄ that represent

the two images. The subtracted image holds the difference between all pairs of corresponding

pixels. The key benefit of image subtraction is the enhancement of difference between the two

target images [Gonzalez and Woods 2001].

3.3.2 Image Averaging

One of the best methods to decrease the effect of noise in an image is image averaging.

Consider a noisy image ݃ሺݔ, ,ݔሻ formed by adding noise ݊ሺݕ ,ݔሻ to the original image ݂ሺݕ ሻݕ

as shown in 3.7.

 ݃ሺݔ, ሻݕ ൌ ݂ሺݔ, ሻݕ ൅ ݊ሺݔ, ሻ. (3.7)ݕ

The general idea of image averaging is that for every pair of coordinates ሺݔ, ሻ on theݕ

image where the noise is uncorrelated, the amount of noise can be reduced by adding a set of

noisy images to the original image [Gonzalez and Woods 2001] as shown in Figure 3.2.

3.4 Image Filters

Most of the enhancement methods introduced in the previous sections use filters to

apply that enhancement to the images. Some of the more common spatial filters will be

introduced in the following sections.

17

3.4.1 Smoothing Spatial Filters

Smoothing spatial filters are used to blur the images and reduce the noise. They are

widely used in software tools, typically to reduce image noise and details. There are different

filters for smoothing images. Blurring is used in pre-processing steps, such as removing small

details from an image prior to extracting large objects or bridging small gaps between lines or

curves on the image. Noise reduction can be accomplished by blurring with either a linear or

non-linear filter. There are different methods to smooth an image, but among the most popular

ones are the linear filter and the order-statistic filter [Gonzalez and Woods 2001].

One of the most commonly used smoothing filters is the Gaussian filter. The Gaussian

filter is a type of image-blurring filter that uses a Gaussian function (which also expresses

the normal distribution in statistics) for calculating the transformation to apply to each pixel in

the image. The Gaussian function in one dimension is expressed as shown in 3.8.

ሻݔሺܩ ൌ ଵ

√ଶగఙమ
݁ି

ೣమ

మ഑మ, (3.8)

where ߪ is the standard deviation.

For data in two dimensions such as images, it is the product of two such Gaussians, one

in each dimension [Stockman and Shapiro 2001; Nixon and Aguado 2008], as shown in 3.9.

,ݔሺܩ ሻݕ ൌ ଵ

ଶగఙమ
݁ି

ೣమశ೤మ

మ഑మ , (3.9)

where ݔ	is the distance from the origin in the horizontal axis, ݕ is the distance from the origin

in the vertical axis, and ߪ is the standard deviation of the Gaussian distribution [Figure 3.2].

3.4.2 Sharpening Spatial Filters

Sharpening filters are used to sharpen images. Sharpening an image creates an image

that is less blurry than the original image. The principal objective is to highlight fine details in

18

Figure 3.2: Applying different filters to an image (a) Original image
[MathWorks Inc. 2011] (b) Smoothing filter (c) Sharpening filter (d) Gaussian

an image. Image sharpening is used for various purposes and applications ranging from

electronic printing, medical imaging, industrial inspection, and autonomous guidance in

military systems [Figure 3.2].

 (a) (b)

 (c) (d)

3.5 Frequency Domain Enhancements

Another type of enhancement that utilizes the Fourier transform of the target image is

called the frequency domain enhancement. As described in the preceding sections, these

19

enhancement methods process an image in the frequency domain. Some of these methods will

be introduced briefly in the following sections.

3.5.1 Notch Filter

Suppose that there is a need to force the average value of an image to zero. To make

this happen, the value of the Fourier’s principal frequency ܨሺ0,0ሻ, which is equivalent to the

average of the image, must be set to zero. This operation can be done by multiplying all values

of ܨሺݑ, .ሻ by the filter function as shown in 3.10ݒ

,ݑሺܪ ሻݒ ൌ ቄ0 ݂݅ ሺݑ, ሻݒ ൌ ሺܯ 2⁄ , ܰ 2⁄ ሻ
1 ݁ݏ݅ݓݎ݄݁ݐ݋

, (3.10)

where ݑ and ݒ are Fourier transform variables, and ܯ and ܰ are width and height of the image

respectively. Following this step, an inverse Fourier transform is applied to ܪሺݑ, ሻ which willݒ

result in an image with zero average.

Notch filters are exceptionally useful in identifying spatial image effects caused by

specific localized frequency domain components [Gonzalez and Woods 2001].

3.5.2 Low-pass and High-pass Filters

In the frequency domain of an image, the low frequency components are responsible

for the general gray level appearance of an image over smooth areas, while the high frequency

components are responsible for details, such as edges and noise. As a result, a filter that

attenuates high frequencies while “passing” low frequencies is called a low-pass filter. Such a

filter is used to smooth the image. On the other hand, a filter that has the opposite

characteristics is appropriately called a high-pass filter which sharpens the image.

20

3.6 Image Segmentation

Image segmentation is the process of partitioning a digital image into multiple

segments, also known as sets of pixels or super-pixels. The goal of segmentation is to simplify

or change the representation of an image into something that is more meaningful and easier to

analyze [Stockman and Shapiro 2001]. Image segmentation is typically used to locate objects

and boundaries, such as lines and curves in images. More precisely, image segmentation is the

process of assigning a label to every pixel in an image such that pixels with the same label

share certain visual characteristics.

The result of image segmentation is a set of segments that collectively cover the entire

image or a set of contours extracted from the image. All of the pixels in a region are similar

with respect to some characteristics or computed properties such as color, intensity, or texture.

Adjacent regions are significantly different with respect to the same characteristic(s)

[Stockman and Shapiro 2001].

Several general-purpose algorithms and techniques have been developed for image

segmentation. In the following sections, some of these methods will be briefly introduced.

3.6.1 Thresholding

The simplest method of image segmentation is called the thresholding method. This

method is based on a clip-level (or a threshold value) to turn a gray scale image into a binary

image. The key of this method is to select the threshold value (or values when multiple levels

are desired). The algorithm then classifies the pixels into different segments according to the

threshold value(s). Several popular thresholding methods are used in industry including the

maximum entropy method, Otsu's method (maximum variance), and k-means clustering.

21

In some recent research projects, new methods have been developed for thresholding

Computed Tomography (CT) images. The key idea is that unlike other methods, the thresholds

are derived from the radiographs instead of the reconstructed image [Batenburg and Sijbers

2009a; Batenburg and Sijbers 2009b].

3.6.2 Edge Detection

Edge detection is a well-developed field of image processing. Since there is often a

sharp adjustment in intensity at the region boundaries, region boundaries and edges are closely

related. Edge detection techniques have therefore been used as the base of another

segmentation technique. Edge detection is by far the most common approach for detecting

meaningful discontinuities in gray level.

The edges identified by edge detection algorithms are often disconnected. To segment

an object from an image, however, one needs asset of closed region boundaries. The desired

edges are the boundaries between such objects.

Segmentation methods can also be applied to edges obtained from edge detectors.

Lindeberg and Li [1995] developed an integrated method that segments edges into straight and

curved edge segments for parts-based object recognition. This method is based on a minimum

description length (MDL) criterion that is optimized by a split-and-merge-like method. This

method can be used to obtain more likely points at which to consider partitions into different

segments.

3.6.3 Region-growing Methods

As its name implies, region growing is a procedure that groups pixels or subregions

into larger regions based on predefined criteria. The basic approach is to start with some seed

points, and from these points grow regions. The region for a seed grows by appending to each

22

seed those neighboring pixels that have properties similar to the seed (such as a specific range

of gray level or color). In that case, it is called seeded-region-growing method.

Seeded-region-growing methods require seeds as additional inputs. The segmentation

results are dependent on the choice of seeds. Noise in the image can cause the seeds to be

poorly placed. Unseeded-region-growing is a modified algorithm that does not require explicit

seeds, starting off with a single region ܣଵ. The pixel selected for processing does not

significantly influence the final segmentation. At each iteration, the algorithm considers the

neighboring pixels in the same way as seeded-region-growing. This method differs from the

seeded-region-growing method in that if the minimum ߜ is less than a predefined threshold ܶ

then it is added to the respective region ܣ௝. If not, then the pixel is considered significantly

different from all current regions ܣ௜ and a new region ܣ௡ାଵ is created with this pixel.

One variant of this technique, proposed by Haralick and Shapiro [1992], is based on

pixel intensities. The mean and scatter of the region and the intensity of the candidate pixel is

used to compute a test statistic. If the test statistic is sufficiently small, the pixel is added to the

region and the region’s mean and scatter are recomputed. Otherwise, the pixel is rejected and

is used to form a new region.

3.6.4 Split-and-merge Method

Split-and-merge segmentation, sometimes called quad-tree segmentation, is based on a

quad-tree partition of an image. This method begins at the root of the tree that represents the

whole image to determine if the image is non-uniform (not homogeneous). If so, the image is

split into four son-squares (the splitting process), recursively. Conversely, if four son-squares

are homogeneous, they can be merged as several connected components (the merging process).

The node in the tree is a segmented node. This process continues recursively until no further

23

splits or merges are possible [Horowitz and Pavlidis 1974; Horowitz and Pavlidis 1976]. The

optimal time complexity of this method is ܱ ሺ݈݊݊݃݋ሻ. When a special data structure is involved

in the implementation of the method, the optimal time complexity can be achieved [Chen

1991].

3.7 Optical Character Recognition

Optical Character Recognition (OCR) is a method for detection and recognition of

characters and numbers and converting them into digital format. It deals with the problem of

recognizing optically processed characters. Optical recognition is performed off-line after the

writing or printing has been completed, as opposed to on-line recognition where the computer

recognizes the characters as they are drawn. Both hand written and printed characters may be

recognized, but the performance is directly dependent upon the quality of the input documents.

The more constrained the input is, the better the performance of the OCR system will be.

However, when it comes to totally unconstrained handwriting, OCR machines are still a long

way from reading as well as humans [Eikvil 1993].

Character recognition techniques associate a symbolic identity with the image of the

target character. The modern version of OCR appeared in the middle of the 1940s with the

development of the digital computers. OCR machines have been commercially available since

the middle of the 1950s. Nowadays, OCR systems are available both as hardware devices and

software packages, and a few thousand systems are sold every week.

A typical OCR system consists of several components. The first step in the process is

to digitize the analog image/document using an optical scanner. When the regions containing

text are located, each symbol is extracted through a segmentation process. The extracted

symbols may then be preprocessed to facilitate the extraction of features in the next step. This

24

step also reduces the noise in the scanned image. The identity of each symbol is found by

comparing the extracted features with descriptions of the symbol classes obtained through a

previous learning phase. Finally, contextual information is used to reconstruct the words and

numbers of the original text [Eikvil 1993].

One of the simplest techniques for implementing OCR is to have a stored pattern for

every character and then compare the similarity of the unknown character with all the stored

patterns. An unknown character is then recognized as the one with the highest similarity.

Although this method is not very accurate in most cases, it is often one of the first options, as

it is not computationally intense.

For the purpose of this research, since the only patterns that need to be recognized are

the numbers from 0 to 9 that are used for expressing time and date on the image, a simple and

fast OCR method is implemented to recognize the digits from the timestamp in an image.

3.8 Identifying and Counting Bees

A goal of this research is to successfully identify and estimate the number of honey

bees in front of the beehive. As such, several different approaches are used to accomplish this.

In the following sections some of the methods will be discussed.

3.8.1 Change Detection

Change detection algorithms apply image processing techniques on two or more

separate images to find the difference between the images of the object at different stages.

These techniques are usually utilized for detecting motion in a sequence of images. An example

is detection of moving objects in the videos obtained by a surveillance system. These methods

25

are becoming more popular due to their vast applications in remote sensing, surveillance,

medical diagnosis and treatment, civil infrastructure, and underwater sensing.

Change detection attempts to identify pixels that are significantly different in a given

set of images that are taken from the same scene at different times. The significant change here

means that the differences between pixel values are resulted from the moving objects. In other

words, the difference in color of an object that may be due to illumination changes should not

be distinguished as a significant change. The pixels that show a significant difference are

represented as the change mask.

The definition of the change mask depends on the application for which it is used. For

example, for the purpose of this research the change in the color of the beehive is not observed

as a significant change, thus it should not be included in the change mask. This is very different

in a remote sensing application where it might be useful to account the color changes in the

change mask.

The goal of the change detection algorithms is to detect significant changes. To

eliminate insignificant changes, some pre-processing algorithms may be applied to the target

image. Two of these pre-processing algorithm are Geometric Adjustment, and

Radiometric/Intensity Adjustment [Radke et al. 2005].

A. Geometric Adjustment

Some of the changes in the video recordings are due to the unwanted movements of the

camera. In most cases, these changes are undesired and must be eliminated before the change

detection methods are applied to the image. The adjustment of the image due to the motion of

the camera is referred to as Image Registration. In most applications, such as the one on this

research or that on a surveillance system, the camera is mounted and the motion is small. In

26

such cases, the image registration can be performed using a low-dimensional spatial

transformation, such as similarity, affine, or projective transformation. One of the application

of image registration is in commercial digital cameras. When an image is taken, image

registration is applied to the image to eliminate the changes resulted from hand shaking. The

problem of geometric adjustment has been well studied and several software applications are

available for image registration [Radke et al. 2005].

B. Radiometric/Intensity Adjustment

Some of the changes in image sequences taken by a video camera are resulted from the

changes in the strength or position of the light source in the image. In many applications, these

changes are classified as “unimportant” changes. Radiometric/Intensity adjustment methods

are applied to eliminate these unimportant changes. There are several techniques to achieve

this with reasonable success. In the following sections, several techniques for radiometric or

intensity adjustment will be introduced.

1) Intensity Normalization

One of the simplest methods for illumination-invariant change detection is to normalize

the intensity level of the target image such that its mean and variance are the same [Lillestrand

1972; Ulstad 1973; Dai and Khorram 1998]. This calculation is shown in 3.11.

ሻݔሚଶሺܫ ൌ
ఙభ
ఙమ
ሼܫଶሺݔሻ െ ଶሽߤ ൅ ଵ, (3.11)ߤ

where ܫሚଶሺݔሻ is the normalized second image and ߤ௜ and	ߪ௜ are the mean and variance of

intensity values of ܫ௜, respectively.

Instead of applying the normalization 3.11 to each pixel using the global statistics ߤ௜

and ߪ௜, the images can be divided into several corresponding disjoint blocks, and the

27

normalization is performed independently using the local statistics of each block. This can

achieve better local performance at the expense of introducing blocking artifacts.

2) Homomorphic Filtering

For images of scenes containing Lambertian surfaces, the observed image intensity of

a pixel ݔ	can be modeled as the product of two components: the illumination ܫ௟ሺݔሻ from the

light source(s) in the scene and the reflectance ܫ௢ሺݔሻ of the object surface to which ݔ belongs,

as shown in 3.12.

ሻݔሺܫ ൌ ሻ. (3.12)ݔ௢ሺܫሻݔ௟ሺܫ

This is called the Shading Model [Phong 1975]. Only the reflectance component ܫ௢ሺݔሻ

contains information about the objects in the scene. Due to this fact, a homomorphic filter can

be used to separate the two components of the intensity signal. To obtain this, logarithms are

taken on both sides of 3.12 to obtain 3.13.

 ln ሻݔሺܫ ൌ ln ሻݔ௟ሺܫ ൅ ln .ሻݔ௢ሺܫ (3.13)

Since the lower frequency component is now additive, it can be separated using a high-

pass filter. The reflectance component can thus be estimated as 3.14 [Radke et al. 2005].

ሻݔሚ௢ሺܫ ൌ ሺlnܨሼ݌ݔ݁ ሻሻሽ, (3.14)ݔሺܫ

where ܨሺ. ሻ represents a high-pass filter. The reflectance component can be provided as the

input to the decision rule step of a change detection process [Toth et al. 2000; Aach et al. 2001].

3) Linear Transformations of Intensity

Another method for reducing illumination changes is to use eigenvalue of the image to

determine the changed parts of the image. The parts of the image corresponding to the large

eigenvalues are estimated to reflect the parts with changes, and those parts corresponding to

the smaller eigenvalues are determined as the unchanged parts. The difficult part in this method

28

is to determine the principal components of the changes without the need of visual inspection

[Radke et al. 2005].

4) Sudden Changes in Illumination

Xie et al. [2004] observed that under the Phong shading model with slowly spatially

varying illumination, the sign of the difference between corresponding pixel measurements is

invariant to sudden changes in illumination. This result can be used to create a change detection

algorithm that is able to discriminate between “uninteresting” changes caused by a sudden

change in illumination (e.g., turning on a light switch) and “interesting” changes caused by

object motion.

 As explained in the preceding sections, there are different methods to detect changes.

For the purpose of this research, an illumination invariant algorithm is used [Durucan and

Ebrahimi 2000]. This algorithm uses the linear independency between parallel vectors to

separate the changes caused by illumination from the changes caused by movement of objects

in the scene. This method is explained in more detail in Chapter 5.

3.9 Counting Methods

After applying change detection methods on a target image, the result is a change mask

that has the same size as the reference image. This mask illustrates the changes between the

reference image and another image. The number of changes in the image is a good

approximation of objects that have moved in the scene at the time the image is taken, assuming

that only the significant changes are represented in the change mask. If the changes in the

image are represented by 1 and the background is represented by 0 in the change mask, then

by counting the number of separated white parts (pixel value of 1) of the change mask, the

29

result would be a good approximation of the number of moving objects. One of the methods

most commonly used to count the number of regions in an image and labeling them is called

connected components labeling [Haralick and Shapiro 1992]. This operation performs one unit

change from a pixel to a region or from a pixel to a segment. All pixels that have value 1 and

are connected to each other by a path of pixels with value 1 are given the same identifying

label. This label is a unique identifier for each region. Since the building blocks of a digital

image are its pixels, this counting algorithm is applied to pixels. In this process, the connected

component labeling is a conversion from pixels to regions. The number of labels determines

the number of regions detected as separate changes in the scene.

There are several algorithms to implement the connected component labeling. All of

these algorithms process the image row-by-row and then label the connected pixels. For

example, consider Figure 3.3.a, and assume a 4-adjacency with left-to-right, top-to-bottom

scan order. In the first row, two 1 pixels separated by three 0 pixels are encountered which will

be assigned label 1 and label 2, respectively. In row two the first 1 pixel is assigned label 1

because it is a 4-neighbor of the already-labeled pixel above it. The second 1-pixel on row 2 is

also assigned label 1 because it is in the 4-neighbor of the already-labeled pixel on its left. This

process continues until the pixel marked ‘A’ in row 4 is encountered [Figure 3.3.b]. Pixel ‘A’

has a pixel labeled 2 above it, and it connects regions 1 and 2. Thus all the pixels labeled 2 and

all the pixels labeled 1 belong to the same component. There are different approaches to solve

this problem. Two of these approaches will be explained briefly in this section.

30

Figure 3.3: Propagation process. Label 1 has been
propagated from the left to reach pixel A. Label 2 has been

propagated down to reach pixel A. The connected components
algorithm must assign a label to A and make labels 1 and 2 are

equivalent [Haralick and Shapiro 1992].

(a) (b)

Iterative algorithm: This algorithm uses an initialization step to label all the pixels

with value 1. This step is followed by a sequence of top-down label propagation followed by

the bottom-up label propagation iterated until no label changes occur. This algorithm is useful

on computers on which the memory size in not a problem and also in SIMD hardware [Haralick

and Shapiro 1992].

Classical algorithm: Compared to the iterative algorithm, the classical method only

passes through the image twice, which makes the algorithm faster. The disadvantage of this

method is that it requires a large global table for storing the equivalences. The first pass finds

the difference labels in a similar approach as explained in the previous section. With this

approach, whenever there is a pixel that can have both labels, it will be labeled with the smaller

value. After the first pass, the equivalence classes are found by taking the transitive closure of

the set of equivalence recorded in the Equivalence Table. This step is called the “Resolve” step

which is a standard algorithm discussed in many algorithm books, such as Aho et al. [1983].

Each equivalence class is assigned a unique label, usually the minimum (or oldest) label in the

class. Finally, a second pass through the image performs a translation which is basically

assigning to each pixel the label of the equivalence class of its pass-1 label.

31

Although these two algorithms work reasonably well in assigning a label to each object

in the image, they both use a significant amount of memory. Because of this drawback, other

algorithms have been developed that label images faster and require less memory. One of those

methods is used for the purpose of this research and it is explained in Chapter 5 in more detail.

3.10 SNR and Entropy

Signal-to-noise ratio (SNR) is a measure of a desired signal to the background noise.

SNR is an indication of the amount of noise added to the image data. A high SNR value is

often seen as an indicator of the image quality. The SNR can be applied to digital images to

calculate the level of the noise and also to measure the effectiveness of different filters.

Different information can be retrieved from the SNR of an image which makes it an excellent

candidate for image analysis. For example, if the background of an image taken from a beehive

is defined as the desired signal, then the changes due to illumination or moving object can be

interpreted as the noise. The SNR of an image can be calculated using 3.15 [Brislawn 1995].

ܴܵܰ ൌ 10 ൈ logଵ଴ ቆ

∑ ൫௢௥௜௚೔,ೕ൯
మ

೔,ೕ

∑ ൫௘௡௖೔,ೕି௢௥௜௚೔,ೕ൯
మ

೔,ೕ
ቇ, (3.15)

where ݃݅ݎ݋௜,௝ refers to the pixel value at location ݅, ݆ in the original image and ݁ ݊ܿ௜,௝ represents

the pixel value at the same location in the noisy image.

Entropy is a statistical measure of randomness that can be used to characterize the

texture of a target image [Gonzalez and Woods 2001]. When applied to an image, entropy is a

measure of the amount of details in the image. The entropy value is calculated using 3.16.

ݕ݌݋ݎݐ݊ܧ ൌ ∑ Prሺ ௝ܽሻ logଶ Prሺ ௝ܽሻ௝ , (3.16)

where ௝ܽ represents the ݆௧௛ unique intensity value and Pr	ሺ ௝ܽሻ is the probability of that pixel

value occurring within the image. Usually, entropy is calculated for grayscale images; however

32

it can be defined for RGB images by treating them as a multidimensional grayscale image

[Gonzalez et al. 2003]. In information theory, entropy represents the level of uncertainty in a

random variable. In the context of image processing, the term usually refers to the Shannon

Entropy, which quantifies the expected value of the information contained in a message

[Gonzalez and Woods 2001]. In physics, entropy is a mathematically defined function that

accounts for the flow of the heat through the Carnot Cycle.

33

Figure 4.1: Flowchart of the system designed for studying the activity of honey bees

CHAPTER 4 EXTRACTION OF DATA FROM IMAGES

4.1 Introduction

To observe the behavior of honey bees and to find a relationship between their activities

and local weather data such as temperature and humidity, an automatic system is desirable. As

part of this research, a system is designed and implemented to monitor the entrance of beehives

using video cameras. The flowchart of the system is shown in Figure 4.1. This system is

divided into two main parts: image processing and data acquisition and analysis system.

Implementation and design of image processing part is described in this and the next chapter.

The other parts of the system that contain gathering images, weather data, and iPhone

application are described in Chapter 6.

34

Figure 4.2: Top view of the beehive entrance with timestamp

The processing of images that are taken from a beehive is conducted in two independent

steps: one step is to extract the date and time from images and the other step is to count the

number of bees. Time and date are embedded in the videos taken from a beehive. In this

chapter, the methods used for extracting time and date are explained.

4.2 Timestamp Extraction

To have an easy access to images that are taken from a beehive, they need to be stored

in a database. In this research, a relational database is designed using MySQL to store the data.

To retrieve and also have easy access to the data, a primary key is needed to distinguish images

from each other. For the purpose of this research, time and date are selected as the primary key

for each tuple in the database. The cameras that are used in this research embed time and date

in the videos. This timestamp is placed at the bottom right corner of the images (Figure 4.2).

35

Figure 4.3: The timestamp image section

As shown in Figure 4.2, the timestamp has a distinct color from the whole image. This

feature can be used to extract the timestamp from the images. Also, the position of the

timestamp is the same in all images. The location and the color of the timestamp can be used

to separate it from the background of the image in an optimized way.

The implemented program for separating the timestamp from the background goes

through each image pixel-by-pixel to find the timestamp, using the color value of the pixels in

the timestamp. This process is time consuming since the algorithm needs to check each pixel

on the image. As mentioned above, the position of the timestamp in the images never changes.

This fact can be used to optimize the time aspect of the algorithm. As a result, the searching

algorithm is only applied to the portion of image that the timestamp is located. The size of the

images taken by the camera is 640 ൈ 480 pixels, and only a small portion of the image (96 ൈ

147 pixels) used for the timestamp is processed by the algorithm. This portion has 20 times

fewer pixels than the original image which makes the process of finding the timestamp 20 time

faster (Figure 4.3).

4.3 Segmentation of the Timestamp from Images

The next step in extracting time and date from the image is to separate the timestamp

from the other part of the image (i.e., the background). Since the color of the timestamp never

changes, and is distinctive from the background, it can be used in a searching algorithm. To

use a search algorithm based on the color in an image, the Cylindrical Coordinate format is

36

Figure 4.4: (a) Original image, (b) Hue component (c) Saturation component (d)
Value component

used. This format is the closest model to the human interpretation from colors and is

abbreviated as HSV (Hue-Saturation-Value). To find the timestamp in an image using the HSV

format, the algorithm only needs to process the Value component of the format. This is another

reason for using HSV over other color models. For example, to do the same process in the Red-

Green-Blue (RGB) format, all the three components of the color space should be processed to

find the desired color. The three components of the timestamp image in the HSV format are

depicted in Figure 4.4.

As shown in Figure 4.4, the value part of the image can be used to extract the timestamp

from an image.

(a) (b)

(c) (d)

To produce the binary image, the HSV format of the image is computed and the value

component is used to find the timestamp. The implemented search algorithm goes through the

value component of this format and checks the value of each pixel. If the value of the pixel is

greater than a threshold value, it is estimated as a part of the timestamp, otherwise it is

estimated as part of the background, as shown in 4.1.

,ݔሺܤ ሻݕ ൌ ቄ0 ݂݅ ܸሺݔ, ሻݕ ൏ ݈݀݋݄ݏ݁ݎ݄ݐ
1 ݁ݏ݅ݓݎ݄݁ݐ݋

, (4.1)

where ܤሺݔ, ,ݔcoordinates and ܸሺ ݕ and ݔ ሻ is the binary image withݕ ሻ is the value part of theݕ

timestamp image with the same coordinates.

37

Figure 4.5: Enlarged timestamp binary image after applying
threshold

In the resulting binary image, the pixels corresponding to the timestamp get value 1 or

maximum possible value and the background pixels get 0, as shown in Figure 4.5.

The resulting image from the last step is a binary image consisting of the timestamp

and black background. This image can be used in the next step to extract time and date where

the image is processed and the digits in the image are recognized. Before this step, each digit

in the image should be separated from other digits in the timestamp.

4.4 Separating the Digits

The size of images used in this research is 640 ൈ 480 pixels. To separate the digits from

each other as different segments of the image, either the iterative or classical method explained

in Chapter 3 can be used. Using one of these algorithms, depending on the size of images,

processing an image to separate the digits would take more than ten seconds. To reduce this

time for the purpose of this research and to achieve a faster algorithm, the separation process

is implemented using an efficient run-length branch of the local method.

This process starts by making a run-length encoding of a binary image. A run-length

encoding of a binary image is a list of contiguous, typically horizontal runs of 1-pixel. For each

run, the location of the starting pixel of the run and either its length or the location of its ending

pixel must be recorded. Figure 4.6 shows the run-length data structure of this run-length

encoding. Each run in the image is encoded by its starting and ending pixel locations. The

38

Figure 4.6: The process of making run-length table. (a) Binary image (b)
and (c) Run-length table

location of the starting pixel is (ROW, START_COL) and the location of the ending pixel is

(ROW, END_COL). The label of the connected component to which this run belongs will be

stored in PERM_LABEL. This is initialized to zero and assigned temporary values in pass 1

of the algorithm. At the end of pass 2, the PERM_LABEL field contains the final and

permanent label of the run. This structure can then be used to output the labels back to the

corresponding pixels of the output image.

Consider a run ܲ of 1-pixel. During pass 1, when the run has not yet been fully

processed, PERM_LABEL (P) will be zero. After run ܲ has been processed and determined to

be adjacent to some other run ܳ on the previous row, it will be assigned to the current label of

ܳ, PERM_LABEL (Q). If it is determined to be adjacent to other runs (ܳଵ, ܳଶ, … , ܳ௞) also on

the previous row, then the equivalence of PERM_LABEL(Q), PERM_LABEL(Q1),

PERM_LABEL(Q2), …, PERM_LABEL(Qk) must also be recorded. The data structures used

for recording the equivalences are shown in Figure 4.7.

 (a) (b)

 (c)

39

Figure 4.7: Data structure used for keeping track of equivalence classes

For a given run ܲ, PERM_LABEL(P) may be zero or nonzero; If it is nonzero, then

LABEL(PERM_LABEL(P)) may be zero or nonzero, and if it is zero, then PERM_LABEL(P)

is the current label of the run and there is no equivalence class. If it is nonzero, then there is an

equivalence class and the value of LABEL(PERM_LABEL(P)) is the label assigned to that

class. All the labels that have been merged to form this class will have the same class label;

that is, if run P and run P’ are in the same class, LABEL(PERM_LABEL(P)) =

LABEL(PERM_LABEL(P’)). When such an equivalence is determined, if each run was

already a member of a class and the two classes were different, then the two classes are merged.

This is accomplished by linking together each prior label belonging to a single class in a linked

list pointed to by EQ_CLASS(L) for class label ܮ and linked together using the NEXT field of

the LABEL/NEXT structure. To merge two classes, the last cell of one is made to point to the

first cell of the second and the LABEL field of each cell of the second is changed to reflect the

new label of the class [Haralick and Shapiro 1992].

This algorithm runs through the image one time to make the run-length table. In the

second step, this table is used to find the connected segments and label them the same. Since

the run-length table is much smaller than an image, and also this algorithm only runs through

40

the whole image once, this process is much faster than the methods explained in Chapter 3.

After running this algorithm, each digit in the timestamp of the image is labeled differently.

To complete the recognition of time and date, each segment should be recognized as a number.

Prior to the recognition step, the segments with a smaller size than a minimum threshold are

removed. This is done by keeping in mind that the number of pixels in a segment that is

representing a digit in the timestamp should be greater than a minimum value, otherwise that

segment is a result of the noise in the image. As shown in Figure 4.8, Number 1 has the least

number of white pixels, so the minimum value for a segment is 0.7 percent of the number of

pixels representing Number 1. This process also removes the colons between hour, minute,

and second in the timestamp.

4.5 Recognition of Digits

The last step in extracting time and date is the recognition part. In this step, each

segment from the last step is recognized as a digit from 0 to 9. All the segments from the last

step should be recognized as a digit, since the colons in the time part of the timestamp is

removed in the last step. Because the size of the timestamp is small and the color is

distinguishable from other parts of the image, a simple character recognition algorithm is used

to detect the digits.

The algorithm designed and implemented in this research for recognizing the digits is

simple and fast. Since the font of the digits in the timestamp is the same, first each white

segment resulted from the last step is placed on a black background with a predefined size

which is called badges on this thesis. The unknown badge can be recognized as either a

specified number or an unknown number between 0 and 9. The algorithm compares each

unknown badge with every number in the pattern. The patterns for the numbers are made in

41

Figure 4.8: All the numbers with the same pattern as
the timestamp

Photoshop with the same predefined size as the badges, and each badge is compared to all of

the patterns, as shown in Figure 4.8.

The similarity is simply measured from the number of white pixels in each number and

the unknown segment. Also, some of the unique features of each number is considered in the

similarity analysis process. For example, Number 1 has no white pixel on the right side of its

pattern; in this case, if the program finds white pixels on the right side of the separated segment

(unknown badge) and the number of those white pixels happens to be more than a threshold,

the unknown badge is not recognized as Number 1, even if the badge has the highest similarity

with Number 1 as compared to the other numbers. Furthermore, if the similarity between an

unknown badge and all the patterns is lower than a threshold, then the number is recognized

as unknown.

In some cases, due to the noise introduced in the videos, the algorithm might not be

able to recognize the numbers, correctly. For example, Number 5 might be detected as Number

6 or the number of segments resulted from the last step could be less than 14, which is the

number of digits in the timestamp. To reduce these errors the script that stores the data in the

database compares the date and time with the last image stored in the database. To find out the

last image stored in the database, an auto increment number (id) is used to store the data, so

42

the query looks for the tuple in the database with the highest id. Although date and time could

be used to find the latest image, it would be more time consuming to find the latest date and

latest time in a long query. After finding the latest data, the script compares the date and time

to check whether the difference is negative, the difference is more than one year, or the date

and time are not completely detected. In these cases, the algorithm uses the time and date of

the latest image, and adds 10 seconds to it, then stores those values as the time and date for the

new image in the database. The process of extracting time and date from images and storing

them in the database is shown in Figure 4.9.

Figure 4.9: The flowchart of the process of extracting time from images

43

CHAPTER 5 IDENTIFYING AND COUNTING BEES

5.1 Introduction

To study the activities of honey bees, the best way is to monitor them over a long period

of time. This task can be done using image processing techniques. Using image processing,

bees are detected in each image and their number in front of the beehive is estimated. The

number of bees in front of the beehive can be a good indication of the beehive’s health status.

 This chapter explains the process of identification of bees in an image, as shown in

Figure 5.1. This process is done in parallel with time and date extraction. The results of both

processes are stored in a MySQL database. These data can be stored for a long period of time

and then can be used to find the relationship between the activities of bees and changes in the

local temperature and humidity.

Figure 5.1: The process of finding the number of bees in an image

44

5.2 Detecting Bees

To record the videos from a beehive, surveillance cameras are used in this research.

These cameras are easy to set up, provide wireless communication, and can work in various

weather conditions. Despite these advantages, they do not provide high quality videos. The

highest quality provided by these cameras is 640 ൈ 480 pixels.

To identify and detect bees in an image, a variety of methods can be used mainly based

on the bees’ features. The size of bees, their color, and also the structure of their body can be

used as distinguishable features. In this research, due to the quality of videos, identification of

bees using their features and finding their direction in an image were not feasible. Also, due to

the same problem and the distance between the camera and the hive, it is extremely hard for

human eyes to detect the bees in an image as shown in Figure 5.2. It is worth nothing that the

cameras used in this research do not provide true color data. The color of bees in the image is

almost black, with the yellow color of bees not clearly visible as shown in Figure 5.2. Due to

this fact, the color data cannot be used for detecting the bees.

To study bees better, their movement and their flying pattern in front of the beehive

can be monitored. By tracking the bees’ movements, their speed in front of the beehive can be

estimated. To track the bees, there is a need for fast cameras with sufficient frame-per-second

rate to capture the movements closely. The cameras used in this research have an average frame

rate of 16 fps. The average speed of honey bees in front of a beehive is 12 mph [Dolan 2000]

which means a bee flies 5.5 meters every second, therefore, in two consecutive frames of a

video that is recorded with a 16 fps camera, a bee can fly almost the whole length of an image

(50 cm). Consequently, it is not feasible to track a bee in the videos. This limitation prompted

the use of another method to identify and detect bees in an image.

45

Figure 5.2: Honey bees’ movement in front of the entrance of beehive

Since the bees are the only moving objects in front of the beehive, the fastest and easiest

method for finding the bees in an image is the change detection method. A change detection

algorithm, as the name implies, compares two images and returns the differences between them

as a binary mask, showing the changes as 1’s and the unchanged parts as background. This

mask is called change mask, and this method can be used to observe movement of objects or

humans in a surveillance video.

To use a change detection method to detect bees, the first step is to find the background

image. This background should not have any changing part in it, i.e., it should not contain any

bees. Finding a static background that can be used as a reference for every image is not feasible.

Changes in illumination and weather conditions make it impossible to have a constant

46

background for reference. For example, if a background is made from the images taken in the

morning and it is used as a reference for an image taken in the afternoon, the algorithm might

detect all the illumination changes as moving objects, and making it harder to detect the actual

moving objects. Also, weather changes can lead to error in the results of the algorithm. Rain

drops can be detected as moving objects when using a background reference that is made from

the images taken in a sunny day.

A simple solution to the background problem is to compute the background for every

image. To find a background for each image that has a similar illumination to the current image

and is taken in the same weather conditions, the background can be prepared by computing the

average of 11 recent images taken from the beehive prior to the current image. This task makes

the whole process more time consuming, but it makes the process of change detection more

accurate and reliable as shown in Figure 5.3.

The next step in detecting the bees in an image is to find the differences between each

image and the background. To accomplish this, different methods of change detection can be

used to find the change mask. Since the cameras are placed outdoors and all the recordings are

done outside, changes in illumination are the main problem to be eliminated in the final mask.

The movement of cameras and the leaves of the plants close to the hive can also cause some

changes in the scene. Different change detection methods are applied and their results are

compared to each other and the method with the best results is selected for detecting changes

in this research.

47

Figure 5.3: Background image made by averaging

The change detection method that produced the best result for use in this research is

robust and illumination invariant change detection and is based on linear dependence [Durucan

and Ebrahimi 2000]. The advantage of this method is that it has all the illumination invariant

part embedded in the processing over most other methods, hence it gives better results for the

purposes of this research.

5.2.1 Illumination Invariant Change Detection

For the sake of simplicity, in this research the initial state of the image or background

is called the reference image and the final state or the image for detecting bees is called the

current image, shown as ܫ௥ and ܫ௖, respectively. To find the differences between the reference

image ܫ௥ and the current image ܫ௖, the easiest way is to subtract one image from another and

48

find the pixels with value greater than a specified threshold. Although this method works for

most cases, due to illumination changes in the images used in this research, many false changes

are detected. A dynamic background eliminates many of these changes.

To make sure that illumination will not introduce more changes, the illumination

invariant method can be used to make the change mask. This method uses the concept of linear

dependency to find the differences between two images. Linear dependency states that a finite

subset ሼ Ԧܽଵ, … , Ԧܽ௡ሽ of a vector space ܸ is called linearly dependent if the zero vector 0ሬԦ can be

written as a nun-null linear combination of those vectors, as stated in 5.1.

 0ሬԦ ൌ ݇ଵ Ԧܽଵ ൅ ⋯൅ ݇௡ Ԧܽ௡ ݄ݐ݅ݓ ∑ |݇௜| ് 0.௡
௜ୀଵ (5.1)

If there are only two vectors (n=2) shown as with Ԧܽ௥ and Ԧܽ௖ and ݇௜ ∈ ܴ, 5.1 can be rewritten

using 0ሬԦ ൌ Ԧܽ௥ െ ݇௜. Ԧܽ௖, as 5.2.

 ௔ೝభ
௔೎భ

ൌ
௔ೝమ
௔೎మ

ൌ
௔ೝయ
௔೎య

ൌ ݇, (5.2)

where ܽ௥೔ and ܽ௖೔, with ܽ௖೔ ് 0	∀݅, denote the components of each vector. Since the two

vectors are parallel and all the ratios are the same, their variance should be zero, as shown in

5.3.

ଶߪ ൌ ଵ

௡ିଵ
∑ ൬

௔ೝ೔
௔೎೔

െ ൰ߤ
ଶ

,௡
௜ୀଵ ݊ ൌ dimሺܸሻ. (5.3)

The mean is calculated using 5.4.

ߤ ൌ ଵ

௡
∑ ൬

௔ೝ೔
௔೎೔
൰௡

௜ୀଵ . (5.4)

The illumination invariant change detection method models the images as vectors. A

vector can be modeled as the values of pixels in a small window rolling over the target images

and after finding the two vectors, 5.3 can be applied to every pixel in the window. After

49

calculating ߪଶ for each pixel over a window with size n ൈ n for each vector, two scenarios can

happen: if the value of ߪଶ is greater than a threshold, the pixel is accounted as a change in the

image; otherwise, it is detected as a background pixel. To summarize, an invariance operator

 ଶ that is based on the linear dependence definition is derived. This operator is invariant toߪ

linear transformation, which is mostly caused by illumination changes. Thus, by using this

operator as a factor for detecting changes, this method is independent of illumination changes.

5.2.2 Implementation of Illumination Invariant Change Detection

To implement the illumination invariant method, the first step is to convert the image

to a gray-scale. This is done because the algorithm needs to find the changes in the image,

therefore, the gray-scale format has the advantage over the others. For example, the RGB

format has the color information, and to detect moving objects, there is no need to measure the

changes in the color content since the color of an object would change as illumination changes.

After converting an image to its gray-scale, the algorithm can be implemented to process it.

To implement the algorithm, the size of the window and the threshold for invariance

should be optimized. To do this, these parameters are modeled as inputs for a function that

implements the algorithm. This way the arguments can be changed and the values with the best

results can be selected. The code on the server is written in C and the algorithm is implemented

in a MATLAB function. Thus, the MATLAB program can be called with all the arguments

from the C program. The arguments for the function include the window size to make the

vector ܸ, a threshold factor to be compared with ߪଶ, and the value of ߤ for each window.

The first two values are experimental; hence, the best values for them can be found by

trying different values and comparing the results with each other. The value of ߤ is not constant

for the whole image, since it changes for each window, i.e., it must be calculated for each

50

window (vector) using 5.4. The implemented program goes through an image and calculates

the value of ߤ for each window, comparing each pixel in the reference image with the same

pixel in the current image, and computes ߪଶ using 5.3. Each pixel with a ߪଶ greater than the

threshold value is marked as a change and is assigned with the value of 255 (white color),

otherwise, is assigned with 0 (black color).

The result of this step is a change mask which might contain some of the changes that

are caused by the movement of anything in the scene other than the bees. To make the change

detection more accurate, only the changes that are detected in front of the hive are taken into

account. It should be noted that the algorithm can miss some of the changes that are actually

caused by the bees as they are flying around the hive outside the camera’s field of view. The

illumination invariant method makes the results more consistent and also eliminates most of

the detected changes that are unwanted, such as the movements of leaves.

The final step in change detection and finding bees is to refine the change mask and

calculate the size of each segment in the mask. To calculate the size of the segments, the

algorithm uses the same method used in Chapter 4 for labeling the digits in the timestamp to

count the number of pixels in each label. If the size of a segment is less than a threshold value,

which is equal to the average size of bee in the images used in this research, the change is

eliminated; otherwise, it is detected as a bee and taken into account for the change mask. This

is done because there is a possibility that the detected change is not caused by the movements

of a bee. The result of this step is the final change mask that can be used to count the number

of bees in the image.

51

Figure 5.4: A crowded top view of the beehive

5.3 Counting Honey Bees

The final step in the image processing part is to count the number of bees in the change

mask. If the camera used for such a research could provide true color information, this step

could use that data to produce more accurate results.

To find the number of bees in the image, one method is to count the number of segments

in the change mask that is obtained from the change detection algorithm. Since bees are moving

close together in front of the hive, it is possible that some of them are detected as one segment

in the change mask, leading to inaccurate results. Counting that segment as one bee makes the

results inaccurate. In such a case, there will be some differences between the actual number of

bees in the image and the number of segments in the change mask as shown in Figure 5.4.

52

To address the above problem when two or more bees are detected as one segment, the

size of that segment in pixels is larger than the average size of a bee in the image. Therefore,

the size of each segment is compared with the average size of a bee, which is obtained using

several images. After finding all the segments, the size of each segment is calculated and then

is divided by the average size of a bee. The result is used as the number of the bees detected in

that segment. The resulting numbers are added together to estimate the total number of bees in

the image.

53

CHAPTER 6 THE IMAGE ACQUISITION AND DATA
MANAGEMENT SYSTEM

6.1 Introduction

An automated system is designed and implemented in this thesis to capture the data

from a beehive and stores the data in a MySQL database. In the preceding chapters, the image

processing step of this system was explained. This automated system consists of four main

parts. All the image processing techniques, explained in Chapter 4 and Chapter 5, are

implemented in the image processing part of the system. Other than image processing part, the

system includes three more sections.

Receiving data from the cameras, converting them into image frames, storing them on

the server, passing them to the image processing part for processing, and storing the results

and the images in the database are completed in one part of the system. The second part of the

system fetches the temperature and humidity data from the National Weather Service website

[NOAA 2013] and stores them in the database. The third part of the system consists of an

iPhone application and the backend programs. This part makes it possible for the users of the

system to view the stored data on their iOS-based devices.

6.2 Video Recording

To capture the data from a beehive, a 4-channel wireless quad surveillance system with

digital video recorder and an indoor/outdoor motion camera are used. This camera provides

the videos with two different qualities (the highest quality is 640 ൈ 480 pixels) and can send

54

Figure 6.1: Camera installed on top of the beehive

data wirelessly to its receiver up to a maximum distance of 150 feet. Sending data wirelessly

makes the process easier for two reasons: first, there is no need to wire the camera to the

receiver and the processor, and second, the camera can be installed anywhere on or near the

hive. For the purpose of this research, cameras are either installed in front of the hive or at the

top as shown in Figure 6.1.

55

Although there is no need to wire the cameras to a network, they still need to be

powered. There are two options for providing power to the system: first option is to use

chargeable batteries as a power source at the site, and the second option is to wire the cameras

to a power outlet. The first option is portable, but harder to maintain as the batteries need to be

recharged regularly. In this research, since the portability of the system is not much of a

concern, the second option is used. The two cameras are connected to the power outlet to record

the activities of the bees without any interruption.

The qualities provided by the cameras are 640 ൈ 480 and 320 ൈ 240 pixels. Each of

these qualities have its own advantages for use in this research. Processing low quality videos

is four times faster than that of the high quality, but these videos do not provide significant

details and may not contain important features. Since the details are important for the purpose

of this research, the cameras are set to record the videos with the highest quality.

6.3 Extracting Image Frames from Videos

The camera used in this research can send data to the wireless receiver that comes with

it. The data from the receiver can be stored on a SD card, or can be sent to a monitor or a TV

to be viewed using a component video cable. The videos then can be copied from the SD card

onto the server for processing. This requires a person to check the SD card for whether it is

full or not, and copy the videos onto the server. The data are stored on the SD card as videos

and takes significant disk space. For example, a 16GB SD card, which is the maximum capacity

that the receiver can support, is filled by the highest quality videos recorded from a beehive

within 72 hours. Furthermore, the image processing part is designed to process images, so the

videos are not ready for immediate use, hence these videos must be broken into their frame

images. For the purpose of this research, a method that will be explained in the next section is

56

used to extract the image frames from the videos as recording takes place. Then the resulting

images are stored on the server for further processing.

6.4 Storing Individual Images

The receiver that comes with the cameras provides an AV connection that can be used

to connect the receiver to a TV or a monitor for the videos to be viewed live. This connection

can be used to store the image frames directly to the server using a digital video converter. The

converter receives the video stream from an analog or digital device and sends it to a computer.

To use this converter, its driver must be installed on the server or the computer that is receiving

the data. This allows the data to be received and be stored directly on the server. Since the

videos are received by the computer, they can be processed in real time. A program can process

the videos and save them as images as the videos are coming in.

The raw data that are received from the digital video gets converted to individual

images at a desired time interval between two consecutive images. For the purpose of this

research, the images are saved for processing every 10 seconds. This requires a disk storage

that is 160 times smaller than that needed by video recordings. To accomplish this, a script

using MJPG-streamer is implemented.

The MJPG-streamer is a command line application that copies JPG-frame from a single

input plugin to multiple output plugins. It can be used to stream JPEG files over an IP-based

network from the webcam to a viewer like Firefox or even to a Windows Mobile device

running the core pocket media player (TCPMP). The application is written for embedded

devices with very limited RAM and CPU capabilities and can be used on a Unix-based system

[Google Inc. 2011].

57

In our research, the MJPG-streamer is installed on a Linux machine that is connected

to the converter. A Bash script is written that uses the MJPG-streamer to manage the files. This

script creates a new folder with a name that contains the date information. Also, the script kills

all the running instances of the MJPG-streamer and runs a new instance of MJPG-streamer to

capture the images from the input device (converter) every 10 seconds and to store them in the

new folder. For data to be more organized and easily accessible later, this script is

automatically run by the system at midnight every day; hence, the folder name contains the

date when the recording is made. This way, all the images taken in the same day are stored in

one folder to make their processing and accessing easier. The folder for each day contains

almost 9000 images.

To run the script every night a Cron job is used. Cron is the time-based job scheduler

in Unix-like operating systems. Cron enables users to schedule jobs (commands or shell

scripts) to run periodically at certain times or dates. It is commonly used to automate system

maintenance or administration, though its general-purpose nature means that it can be used for

other purposes such as connecting to the Internet and downloading emails [Cognition 1999].

For the purpose of this research, a Cron job is written to run the image extracting script every

night at 12:00 am. The stored images are then processed on the server.

6.5 Image Processing on the Server

After storing the data on the server, they need to be processed, organized, and stored in

a database. All the image processing modules explained in Chapter 4 and Chapter 5 are written

using MATLAB. MATLAB provides almost all the required functions for working with

images. Since the goal is to make the system autonomous, the image processing part needs to

run on the server. To run MATLAB on the server for executing the image processing scripts,

58

the environment must change to the MATLAB environment, which is not possible since the

images should be processed automatically and changing environment on the server cannot be

done by a program.

To run the image processing algorithms on the server, MATLAB engine library is used.

The MATLAB engine library contains routines that allow users to call the MATLAB software

from another program, thereby employing MATLAB as a computing engine. To use this

library MATLAB needs to be installed on the machine. Engine programs are standalone C/C++

or FORTRAN programs that communicate with a separate MATLAB process via pipes on

UNIX systems and through a Microsoft Component Object Model (COM) interface on

Microsoft Windows systems. MATLAB provides a library of functions that allows users to

start and end the MATLAB process, send data to and from MATLAB, and send commands to

be processed in MATLAB [MathWorks Inc. 2010].

Using MATLAB engine library, a program is written in C. This program calls the

engine, opens it, and executes the functions that are passed to it. Using this method, the

MATLAB script cannot be interactive, so all the scripts written in MATLAB must be changed

to MATLAB functions. Therefore, the input image and other parameters can be passed to them

as input arguments.

Following this step, the C program is then placed on the server. This program can be

called by any other program to run the scripts and return the results. Since the goal of this

research is to store the data in a database and be able to access the data on the web, a program

is written in PHP to handle this task. This program can interact with users via the web, call the

C program, and interact with it. This way, the images can be processed from every device using

the web interface and the results can be sent back to the program and shown to the user.

59

To automate the procedure for processing the images and storing them in a database, a

script is written in Bash that calls the C program for every image. This program calls the C

program and passes the images. After processing the images, the C program returns the results

to the script, which stores the processed data in the database. The image cannot be stored in a

MySQL database directly, instead its path on the server is stored in the database. The data that

are stored in the database includes the path to the image on the server, estimated number of

bees in an image, the SNR and entropy of the image, and also the time and date that the image

was taken. The time and date were extracted from individual images using the image

processing techniques that was discussed in Chapter 5.

 The Image acquisition and image processing parts work together to extract and store

the data from the hive images. Figure 6.2 provides a summary of all the steps taken to acquire

an image and process it.

Figure 6.2: The flowchart of image acquisition and image processing part

60

6.6 Weather Data Gathering

To observe the activities of honey bees, the number of bees in an images should be

estimated at different temperature and humidity values. The local weather data must to be

collected from a reliable source on a daily basis. In this research, the data are gathered from

the National Weather Service (NWS) website [NOAA 2013]. This website provides a data feed

of its data, therefore, the data can be fetched using a PHP program.

The data from the National Weather Service are in extensible markup language (XML)

format. Extensible markup language (XML) is a markup language that defines a set of rules

for encoding documents in a format that is both human-readable and machine-readable [Bray

et al. 2013]. It is a textual data format with strong support via Unicode for the languages of the

world. Although the design of XML focuses on documents, it is widely used for the

representation of arbitrary data structures, for example, in web services.

The PHP program reads the data formatted in XML from the NWS website. The PHP

script connects to the website, parses the XML data from the website, and stores the results in

a MySQL database table. To be able to easily retrieve data later, the program reads the date

and time from the server and stores them for every image in the table. This program only reads

the data once and stores them in the database. For the purpose of this research, humidity and

temperature need to be read continuously from the NWS web page. Since the temperature and

humidity data do not change dramatically within one hour, the PHP program is set to run every

hour to fetch these data items. To run the program every hour, a Cron job is created and placed

on the server. As a result, the database table contains climate data for every hour.

This table can be used for finding the relationship between the number of bees around

the beehive and the climate data. The climate data are stored in a table for every hour, but the

61

image data are acquired every 10 seconds. In cases where the data is not available at the desired

time an interpolation schema is used. To find the weather ்ܹ (it can be temperature or

humidity) for a specific time ܶ that is between specific hours ݄ଵ and ݄ଶ with weather values

௛ܹభ and ௛ܹమ, respectively, the interpolation schema in (6.1) is used.

்ܹ ൌ ௛ܹభ ൅

்ି௛భሺ௜௡ ௦௘௖௢௡ௗ௦ሻ

ଷ଺଴଴
ൈ ሺ ௛ܹమ െ ௛ܹభሻ. (6.1)

Using 6.1, the temperature and humidity for any given time can be estimated from the

existing weather data in the database table. The formula in 6.1 assumes that temperature and

humidity change linearly with the time within one hour. This assumption would make the value

resulted from 6.1 slightly different from the actual value for a specific time.

6.7 Storing the Weather and Image Data in the Database

All the data extracted from the image processing part and the data retrieved from the

NWS website need to be organized and stored on the server. The data resulting from the image

processing include a beehive image, date and time that the image is taken, and other data that

are computed for the image, such as SNR and entropy. To store and provide easy access to

data, a MySQL relational database management system is used, in this research. The system

runs as a server providing multi-user access to a number of databases [Oracle Corporation

2013].

A MySQL table is used to store the image data from individual images. This table needs

a primary key that is a combination of one or more attributes in the database and must be

unique for every tuple in a table. For the purpose of this research, an auto increment attribute

(id) is used for all the tables as the primary key. The data from a MySQL table can be accessed

by queries. The most common query for this table is retrieving an image and its corresponding

62

data at the specific date and time. The schema of the table used for image processing data is

shown in Table 6.1.

Table 6.1: Schema of MySQL table used for storing humidity and temperature data

Id Date Time Temperature Humidity

For weather data that are gathered from the NWS website, another table is used. The

data from image processing and weather data cannot be stored in one table, as the weather data

are read from the NWS website every hour and the data from image processing unit are

processed for each image every 10 seconds. As a result, another table is created for the weather

data. Similar to Table 6.1, an incremental id is used as the primary key for this table. This table

stores the time and date, which are read from the server and the temperature and humidity for

that specific date and time. The schema of the table used for storing the climate data is shown

in Table 6.2.

Table 6.2: Schema of MySQL table used for storing images and image processing results

Id Date Time Image URL SNR Entropy Estimated No. of bees

6.8 The iPhone Application

One of the goals of this project is to make a tool for the beekeepers to easily keep track

of the activities of bees. For the purpose of this research, an application is designed and

implemented for iOS-based devices. This application must be able to connect to the database

and access the data. It also must be able to display the data to the user in a user-friendly way,

hence making it easier for the beekeepers to view the beehive data at any time and from

anywhere.

63

There are three main operating systems already running on most of the smart phones.

Android, iOS, and RIM Blackberry for various mobile devices, such as Samsung [Velazco

2011], Apple, and Blackberry mobile devices. Since iPhone is one of the most commonly used

smart phones in the world [Telegraph Media Group 2013], the application is written for this

device. Also, writing an application for iPhone is easier, since there are fewer devices on which

the application deploy.

To develop applications for iPhone, the only integrated development environment

(IDE) that can be used is Xcode. Xcode is an IDE containing a suite of software

development tools developed by Apple for developing software for OS X and iOS. The latest

version is available for Mac OS X Lion and OS X Mountain Lion users [Apple Inc. 2013].

Objective-C is used as the programming language to develop the application for

iPhone. Objective-C is a general-purpose, high-level, object-oriented programming language

that adds Smalltalk-style messaging to the C programming language. It is the main

programming language used by Apple for the OS X and iOS operating systems and their

respective APIs, Cocoa, and Cocoa Touch [University of Texas at Arlington 2013].

The iPhone application provides a simple-to-use and user-friendly interface for the

users to access the data on their iPhones. To connect to the database, the application receives

the time and date as inputs from the user. The interface passes those parameters to a PHP

program using GET method. The PHP program uses the set of arguments and makes a query

from the database table. After getting data from the MySQL database, the PHP program returns

the values to the application in JavaScript Object Notation (JSON) format. JSON is a text-

based open standard designed for human-readable data interchange. After receiving the data

from the database, the application displays the data on the screen, as shown in Figure 6.3.

64

Figure 6.3: Screenshots from the iPhone Application

The flowchart and design of the iPhone application is show in detail in Figure 6.4. As

it was noted earlier, this program enables the beekeepers to access the beehive data on their

iOS-based devices.

Figure 6.4: Flowchart and design of the iPhone application

65

CHAPTER 7 RESULTS

7.1 Introduction

To identify and count the number of honey bees in an image, different image processing

techniques are applied in this research. The result is an estimate from the number of bees in

the image. In this chapter, the results of the image processing methods used in this research

will be provided.

7.2 Background Images

As explained in Chapter 4, the background for an image is obtained by computing the

average of 11 consecutive images prior to that image. Using this method, the background can

be easily obtained for every image. In this section, the background images are shown for

different hours of the day.

Figure 7.1 and Figure 7.2 show the background image that is computed from the

average of consecutive images. Figure 7.1 shows the background of the images that are taken

from the top of the hive. The background image in the morning is shown in Figure 7.1 (a & b).

Figure 7.1 (c & d) show the same view during mid-day. Finally, the last two images, Figure

7.1 (e & f), show the background image in the evening. Figure 7.2 displays the background

images at the same time for the front of the hive. As shown in Figure 7.1 and Figure 7.2, the

background illumination changes drastically during the day. These changes prove that it is not

feasible to use a static background for all the images taken at different times during that day.

66

(a) (b)

(c) (d)

(e) (f)

Figure 7.1: Top view background image for different hours of the day

67

(b)

(c) (d)

(e) (f)

(a)

Figure 7.2: Front view background image for different hours of the day

68

7.3 Time Extraction

The results of the time extraction process are shown in Figure 7.3 and Figure 7.4. The

time and date extracted from the timestamp are depicted in the caption of each image.

Figure 7.3: Extracted image frame at 13:08:09 on 05/31/2013

Figure 7.4: Extracted image frame at 13:34:43 on 05/31/2013

69

7.4 Temperature, Humidity, and Number of Bees

In this section, the climate data fetched from the National Weather Service website

[NOAA 2013] and the data extracted from the images taken from the beehive are represented

for one day. Figure 7.5 shows the SNR and the number of bees during the day. These data are

gathered from images taken from the beehive at different hours.

Figure 7.5: SNR and number of bees during the day

Figure 7.6 and Figure 7.7 display the data for the same time and the same beehive.

Figure 7.6 shows the SNR in a comparison with the estimated number of bees resulted from

the change detection method. Also, Figure 7.7 compares the estimated number of bees

calculated from the change detection method with the actual number of bees. For the top view,

since it is almost impossible to count the number of bees visually in the images, only the

estimated number of bees and the SNR values for each image are shown in Figure 7.8. Figure

7.9 displays the climate data gathered from the National Weather Service website [NOAA

2013], as well as the number of bees for the same day.

Front view (05/31/13)

70

Figure 7.6: Comparison of the SNR and estimated number of bees during the day

Figure 7.7: Comparison of estimated and actual number of bees during the day

Front view (05/31/13)

Front view (05/31/13)

71

Figure 7.8: Comparison of estimated number of bees and SNR

Figure 7.9: Actual number of honey bees by humidity and temperature

Top view (05/31/13)

Front view (05/31/13)

72

7.5 Estimated Number of Bees, SNR, and Entropy

When the number of bees increases in an image, if the background image is modeled

as the actual signal and the bees in the image are modeled as the noise, then the value of the

SNR can be used to provide an estimate to the number of bees in the image.

This section provides the results of the change detection method besides the values of

the SNR and entropy is represented. Figure 7.10 and Figure 7.11 show the values of the SNR

and entropy for the images. Figure 7.10 shows the SNR and entropy in images taken from the

top view, while the number of the bees are increasing from top to bottom in the images. Figure

7.11 shows the same information for images taken from the front view of the beehive.

Figure 7.12 and Figure 7.13 show the results of applying the change detection method

to the images from the beehive. Figure 7.12 shows the results for images taken from the beehive

in the front view and Figure 7.13 shows the same results for the top view of the beehive.

73

Figure 7.10: SNR and entropy values for top view

SNR = 26.7, Entropy 7.39 SNR = 18.7, Entropy 7.35

SNR = 15.12, Entropy 7.42 SNR = 15.2, Entropy 7.31

SNR = 14.08, Entropy 7.39 SNR = 13.65, Entropy 7.13

74

Figure 7.11: SNR and entropy values for front view

SNR = 31.78, Entropy 6.90 SNR = 26.21, Entropy 6.83

SNR = 21.03, Entropy 7.02 SNR = 20.86, Entropy 7.04

SNR = 17.14, Entropy 7.06 SNR = 14.98, Entropy 7.17

SNR = 13.51, Entropy 7.28 SNR = 13.07, Entropy 7.12

75

Figure 7.12: Number of bees during a day (front view)

(a) (b)

(c) (d)

(e) (f)

76

Figure 7.13: Number of bees during a day (top view)

(a) (b)

(c) (d)

(e) (f)

77

7.6 Change Detection Algorithm Results

As it is mentioned in Chapter 5, to control the change detection algorithm, two

parameters can be changed. The size of the vector that is used in 5.1 to find µ, σ, and the

threshold factor. The size can vary from a 3 ൈ 3 window to a bigger size such as 11 ൈ 11. The

bigger the size of the vector is, the less changes can be found by the algorithm. To find the

changes caused by the bees, the best value should be found by testing different window sizes.

The threshold factor determines whether a pixel is classified as a change or as the background.

To find the best values for these parameters, different values were tested. The results of those

values are shown in Figure 7.14 through Figure 7.18.

Figure 7.14: Window size=25 and threshold=0.05

78

Figure 7.15: Window size=25 and threshold=0.1

Figure 7.16: Window size=25 and threshold=0.25

79

Figure 7.17: Window size=49 and threshold=0.25

Figure 7.18: Window size=81 and threshold=0.25

80

CHAPTER 8 CONCLUSION AND FUTURE WORK

This chapter provides the conclusions made for the research and analyses conducted on

this thesis.

8.1 Background

For the purpose of this research, and due to the constant changes in illumination in the

scene, it was not feasible to make a static background for the scene. Due to this fact, the

background image is made from consecutive images prior to an image that is processed by the

change detection method. As shown in Figure 7.1 (a) and Figure 7.2 (a), when the illumination

does not change much, the background image constructed from multiple images is almost the

same as the actual background of an image without bees. Also, as it can be seen in both Figure

7.1 and Figure 7.2, finding the background from averaging eliminates all the bees in the scene.

When the illumination changes quickly, for example, during mid-day, it can affect the

background resulted from averaging. As shown in Figure 7.2 (b & c), some segments, such as

shadows would be added to the background that make detecting the bees challenging. A simple

solution to address this problem is to capture the snapshots with less time interval between

them. In this research, the interval between two consecutive images is 10 seconds. Using a

faster system the time interval could be reduced to 1 second to produce a more accurate image

of the background.

81

8.2 Time Extraction

The Hue-Saturation-Value (HSV) model is used in this research to extract the time and

date. Since the color of the timestamp is brighter than the other colors in the image, the value

part of this model is used to distinguish this part. By using the value part of the model and

using a threshold value equal to 0.7, the time and date were extracted and recognized. As it is

shown in Figure 7.3 and Figure 7.4, the time and date were extracted in all the images with

100% accuracy. This method can be used to further the research where the local weather data

can be embedded into the image frames of the video as well.

8.3 Temperature, Humidity, and Number of Bees

For the data shown in Figure 7.9, temperature does not change dramatically, but the

humidity varies between 95% in the morning to 40% in the evening. Based on the data for our

research the number of bees during the day suggests that bee activities are negatively correlated

to the humidity. This can be studied further to improve the assumption.

The other parameters that are measured for each image in this research are the SNR

and entropy. As stated in Chapter 4, if the image including the bees is modeled as noise and

the background image is modeled as the actual signal, calculating the SNR gives a

measurement of the noise in the image, hence provides an estimate to the number of bees. A

higher SNR shows that there is less noise, hence fewer bees in the image as compared to that

of a lower SNR. Another advantage of using the SNR to estimate the number of bees is the

simplicity and speed of its calculation compared to the change detection algorithm used in this

research to find the number of bees. Therefore, the SNR can be used to find a quick estimate

of bee activities from the images. Also, to make the SNR more accurate, it can be calculated

82

using only the part of the image in front of the hive framework, eliminating the movement of

plants around the hive.

As shown in Figure 7.7, the estimated number of bees obtained from the change

detection algorithm follows the actual number of bees, except during mid-day, when there is a

significant difference between the actual number and estimated number of bees. Although this

method works for the images that were obtained from the camera installed in front of the hive,

it does not work well for the images from the top. As shown in Figure 7.1, changes in the hive

color make the background darker, hence, making the distinction of the bees flying in front of

the hive more challenging. For example, in Figure 7.13 (d), it is almost impossible to

distinguish the bees and count them visually. The change detect algorithm and the SNR value

face the same problem.

To find the best value for the parameters used in the change detection algorithm,

different window sizes and different threshold values were applied for this algorithm. As

shown in Figure 7.14 through Figure 7.18, different values produce different results. Also,

depending on the time of the day, some values work better. The best results obtained with the

window size of 5 and a threshold value of 0.45. These two values are used for the estimated

number of bees shown in Figure 7.7.

8.4 Change Detection Results

The Illumination invariant change detection algorithm is used as the core algorithm for

detecting the movements of the bees in front of the hive. The results of this algorithm are shown

in Figure 7.14 through Figure 7.18. As shown in Figure 7.14 through Figure 7.16, with the

smaller threshold value of 0.05, less changes are detected by the algorithm, thus some bees are

not be detected as changes in the image. On the other hand, a larger threshold for the algorithm

83

makes the algorithm more sensitive to the changes, and more segments are detected as changes.

To find an optimal value for the algorithm, different values were applied for the threshold value

and 0.25 was used as the threshold value in this research.

Figure 7.16 through Figure 7.18 show the effects of changing the window size. As it

can be seen from these Figures, window size is negatively correlated to the number of bees

detected by the change detection algorithm. Furthermore, increasing window size increases the

time for producing the change mask, hence 5 ൈ 5 was used as the window size to conduct this

research.

8.5 Future Work

In this research, an automated monitoring system was designed and implemented. This

system, takes images from a beehive and stores them on the server. Then the images are

processed on the server using several programs and tools. The collected data include the time

and date that the image was taken, an estimation of the number of bees in the image, the SNR,

and the entropy of the image which are stored in a MySQL database. Besides these data,

weather data are fetched from the National Weather Service website and stored in another

table. To make accessing data easier for the users, an iPhone application is designed and

implemented. This application makes it possible for the users to access data from everywhere

on their iOS-based devices.

For future work, the first improvement is to use higher quality cameras that can transfer

color data wirelessly and provide videos with faster frame rate. Therefore, making it possible

for using other image processing methods besides the change detection method for detecting

the bees.

84

To decrease the run-time of the image processing algorithms, these algorithms can be

implemented in C using open computer vision (OpenCV) libraries. Compared to MATLAB,

these algorithms can be run faster using OpenCV.

The local weather data can be obtained locally inside and outside the hive and be

embedded into the videos. Since the data are embedded in the videos, synchronization of

weather data with the image processing data will be easier. Also, since the weather data are

collected locally, they are probably more accurate as compared to the data fetched from the

National Weather Service website at that location.

To improve the recognition rate of the bees, a learning algorithm can be implemented

to detect the bees using their features. Also, using video processing methods on a faster camera,

it is possible to track the bees individually and gather more information about their activities

and the effect of climate data on their health.

85

Bibliography

Til Aach, Lutz Dümbgen, Rudolf Mester, and Daniel Toth. 2001. Bayesian Illumination-
Invariant Motion Detection. In Proceedings IEEE International Conference on Image
Processing (ICIP), ISBN 0-7803-6725-1 (Ed.), Vol. 3. IEEE, Thessaloniki, 640–643.

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. 1983. Data Structures and
algorithms. Addison-Wesley, Boston, MA.

Apiservices. 2007. DATA2 creates the world’s smallest barcode. (2007). Retrieved March
10, 2013 from http://www.beekeeping.com/articles/us/barcode.htm

Apple Inc. 2013. Mac App Store - Xcode. (2013). Retrieved August 3, 2013 from
https://itunes.apple.com/us/app/xcode/id497799835

Tom Arbuckle, Stefan Schröder, Volker Steinhage, and Dieter Wittmann. 2001. Biodiversity
Informatics in Action: Identification and Monitoring of Bee Species using ABIS. In
Proceedings 15th Int. Symp. Informatics for Environmental Protection. Volume. 425–430.

Kees J. Batenburg and Jan Sijbers. 2009a. Adaptive thresholding of tomograms by projection
distance minimization. Pattern Recognition 42, 10 (2009), 2297 – 2305. Selected papers
from the 14th {IAPR} International Conference on Discrete Geometry for Computer Imagery
2008.

Kees J. Batenburg and Jan Sijbers. 2009b. Optimal Threshold Selection for Tomogram
Segmentation by Projection Distance Minimization. IEEE Transactions on Medical Imaging
28, 5 (2009), 676–686.

BeesFree Inc. 2012. Bee Colony Collapse Disorder. (2012). Retrieved January 2, 2013 from
http://www.beesfree.biz/Ccd

Paul Bourke. 2011. Histogram Matching. (2011). Retrieved April 4, 2013 from
http://paulbourke.net/texture_colour/equalisation/

Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Francois Yergeau. 2013.
Extensible Markup Language. (2013). Retrieved August 3, 2013 from
http://www.w3.org/TR/REC-xml/

Christopher M. Brislawn. 1995. Fingerprint Go Digital. Notices of American Mathematical
Society 42, 11 (November 1995), 1278–1283.

86

Jason Campbell, Lily Mummert, and Rahul Sukthankar. 2008. Video Monitoring of Honey
Bee Colonies at the Hive Entrance. In ICPR Workshop on Visual Observation and Analysis
of Animal and Insect Behavior, ICPR, 1-4.

Jennifer M. Campbell, Douglas C. Dahn, and Daniel A. J Ryan. 2005. Capacitance-based
sensor for monitoring bees passing through a tunnel. Measurement Science and Technology
16, 12 (2005), 2503. http://stacks.iop.org/0957-0233/16/i=12/a=015

John F. Canny. 1986. A Computational Approach to Edge Detection. IEEE Trans. Pattern
Anal. Mach. Intell. 8, 6 (June 1986), 679–698.

Li Chen. 1991. The lambda-connected segmentation and the optimal algorithm for split-and-
merge segmentation. Chinese J. Computers (1991). Cognition. 1999. Newbie: Intro to Cron.
(1999). Retrieved March 3, 2013 from http://www.unixgeeks.org/security/newbie/unix/cron-
1.html

Cognition. 1999. Newbie: Intro to Cron. (1999). Retrieved March 3, 2013 from
http://www.unixgeeks.org/security/newbie/unix/cron-1.html

Xiaolong Dai and Siamak Khorram. 1998. The effects of image misregistration on the
accuracy of remotely sensed change detection. IEEE Transactions on Geoscience and
Remote Sensing, 36, 5 (1998), 1566–1577.

Maureen Dolan. 2000. Tales from hive. (2000). Retrieved April 4, 2013 from
http://www.pbs.org/wgbh/nova/bees/buzz.html

Emrullah Durucan and Touradj Ebrahimi. 2000. Robust and Illumination Invariant Change
Detection Based on Linaer Dependance. In EUSIPCO (Cerebrovascular Diseases). SPIE,
1041–1044.

Line Eikvil. 1993. OCR - Optical Character Recognition. Norsk Regnesentral, P.B., Oslo,
Norway.

James D. Ellis, Jay D. Evans, and Jeff Pettis. 2010. Colony losses, managed colony
population decline, and Colony Collapse Disorder in the United States. Journal of
Apicultural Research 49, 1 (2010), 134–136.

Vladimir Estivill-Castro, Darren Christopher Lattin, Francis Suraweera, and V. Vithanage.
2003. Tracking bees - a 3D, outdoor small object environment. In 2003. ICIP 2003.
Proceedings. 2003 International Conference on Image Processing, Vol. 3.III–1021–4 vol.2.

Rafael C. Gonzalez and Richard E. Woods. 2001. Digital Image Processing (2nd ed.).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Rafael C. Gonzalez, Richard E. Woods, and Steven L. Eddins. 2003. Digital Image
Processing Using MATLAB. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Google Inc. 2011. mjpg-streamer. (2011). Retrieved May 10, 2012 from
https://code.google.com/p/mjpg-streamer/

87

Robert M. Haralick and Linda G. Shapiro. 1992. Computer and Robot Vision (1st ed.).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Steven L. Horowitz and Theodosios Pavlidis. 1974. Picture Segmentation by a directed split-
and-merge procedure. Proceedings of the 2nd International Joint Conference on Pattern
Recognition, Copenhagen, Denmark (1974), ICPR, 424–433.

Steven L. Horowitz and Theodosios Pavlidis. 1976. Picture Segmentation by a Tree
Traversal Algorithm. J. ACM 23, 2 (April 1976), 368–388.

Ramesh C. Jain, Rangachar Kasturi, and Brian G. Schunck. 1995. Machine vision. McGraw-
Hill. I–XX, 1–549 pages.

Ramiro Jordan and Roberto Lotufo. 1997. Bit Plane Slicing. (1997). Retrieved February 18,
2013 from http://www.inf.ufsc.br/~visao/khoros/html-dip/c4/s12/front-page.html

Toshifumi Kimura, Hidetoshi Ikeno, Ryuichi Okada, and Etsuro Ito. 2006. A Study for
Identification and Behavioral Tracking of Honeybees in the Observation Hive Using Vector
Quantization Method. (2006). Retrieved March 2, 2013 from
http://www.noldus.com/mb2008/individual_papers/FPS_animal_behavior_in_the_field/FPS_
animal_behavior_in_the_field_Kimura.pdf

Uwe Knauer, Michael Himmelsbach, Frank Winkler, Fred Zautke, Kaspar Bienefeld, and
Beate Meffert. 2005. Application of an Adaptive Background Model for Monitoring
Honeybees. In Proceedings of 5th IASTED International Conference on Visualization,
Imaging & Image Processing. Benidorm, Spain, 46–50.
http://sites.google.com/site/michaelhimmelsbach/knauer05a.pdf

S. B. Laughlin. 1981. A simple coding procedure enhances a neuron’s information capacity.
Naturforsch (1981), 910-912.

R.L. Lillestrand. 1972. Techniques for Change Detection. IEEE Transactions on Computers,
C-21, 7 (1972), 654–659.

Tony Lindeberg and Meng-Xiang Li. 1995. Segmentation and classification of edges using
minimum description length approximation and complementary junction cues. In Selected
papers from the 9th Scandinavian conference on Image analysis: theory and applications of
image analysis II: theory and applications of image analysis II. World Scientific Publishing
Co., Inc., River Edge, NJ, USA, 39–52. http://dl.acm.org/citation.cfm?id=242838.242842

Arnold E. Lundie. 1925. The flight activities of the honeybee. U.S. Dept. of Agriculture.
http://books.google.com/books?id=w8Q9AAAAYAAJ

MathWorks Inc. 2010. Using MATLAB Engine. (2010). Retrieved October 10, 2012 from
http://www.mathworks.com/help/matlab/matlab_external/using-matlab-engine.html

MathWorks Inc. 2011. Create predefined 2-D filter. (2011). Retrieved October 10, 2012 from
http://www.mathworks.com/help/images/ref/fspecial.html

88

Peter Neumann and Norman L. Carreck. 2010. Honey bee colony losses. Journal of
Apicultural Research 49, 1 (2010), 1–6.

Mark S. Nixon and Alberto S. Aguado. 2008. Feature Extraction & Image Processing.
Academic Press, Waltham, MA.

National Oceanic and Atmospheric administration. 2013. NOAA National Weather Service.
(2013). Retrieved July 4, 2013 from http://www.weather.gov/

Oracle Corporation. 2013. MySQL 5.0 Reference Manual. (2013). Retrieved June 10, 2013
from http://dev.mysql.com/doc/refman/5.0/en/what-is-mysql.html

Minh-Hà Pham-Delègue, Axel Decourtye, Laure Kaiser, and James Devillers. 2002.
Behavioral methods to assess the effects of pesticides on honey bees. Apidologie 33, 5
(2002), 425–432.

Bui Tuong Phong. 1975. Illumination for computer generated pictures. Commun. ACM 18, 6
(June 1975), 311–317.

Simon G. Potts, Stuart P. M. Roberts, Robin Dean, Gay Marris, Mike A. Brown, Richard
Jones, Peter Neumann, and Josef Settele. 2010. Declines of managed honey bees and
beekeepers in Europe. Journal of Apicultural Research 49, 1 (2010), 15–22.

Richard J. Radke, Srinivas Andra, Omar Al-Kofahi, and Badrinath Roysam. 2005. Image
change detection algorithms: a systematic survey. Image Processing, IEEE Transactions on
14, 3 (2005), 294–307.

George Stockman and Linda G. Shapiro. 2001. Computer Vision (1st ed.). Prentice Hall PTR,
Upper Saddle River, NJ, USA.

C.-H. Teh and R.T. Chin. 1989. On the detection of dominant points on digital curves. IEEE
Transactions on Pattern Analysis and Machine Intelligence 11, 8 (1989), 859–872.

The Telegraph Media Group. 2013. The 20 bestselling mobile phones of all time. (2013).
Retrieved April 4, 2013 from http://www.telegraph.co.uk/technology/picture-
galleries/9818080/The-20-bestselling-mobile-phones-of-all-time.html?frame=2458961

Daniel Toth, Til Aach, and Volker Metzler. 2000. Illumination-invariant change detection. In
Image Analysis and Interpretation, 2000. Proceedings. 4th IEEE Southwest Symposium.
IEEE, 3–7.

M.S. Ulstad. 1973. An algorithm for estimating small scale differences between two digital
images. Pattern Recognition 5, 4 (1973), 323 – 333.

University of Texas at Arlington. 2013. Division for enterprise development. (2013).
Retrieved April 7, 2013 from https://web-
ded.uta.edu/wconnect/CourseStatus.awp?~~13PG9081M001

89

Chris Velazco. 2011. Android Still Most Popular Smartphone OS, IOS Holds Steady in
Second Place. (2011). Retrieved June 10, 2013 from
http://techcrunch.com/2011/11/03/android-still-most-popular-os-ios-holds-steady-in-second-
place/

Karl von Frisch. 1993. The Dance Language and Orientation of Bees. Harvard University
Press, Boston, MA. http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-
20\&path=ASIN/0674190513

York County Beekeepers’ Association. 2011. Honeybee facts and trivia. (2011). Retrieved
May 4, 2013 from http://www.ycbk.org/Honeybee\%20Facts\%20and\%20Trivia.htm

Binglong Xie, Visvanathan Ramesh, and Terrance Boult. 2004. Sudden illumination change
detection using order consistency. Image and Vision Computing 22, 2 (2004), 117 – 125.
Statistical Methods in Video Processing.

90

Appendix

All the programs developed for this thesis are included on the enclosed CD. Following is the

list of all the programs:

1. finalparser.php: This program parses the xml file containing weather data from NOAA
[2013] and stores the data in a MySQL table.

2. iPhoneProgProj.php: This program reads the data from the MySQL table, changes the
format to JSON, and sends them to iPhone application.

3. matlabphp.c: This program executes a MATLAB function and displays the results to
the output.

4. phpmatlab.php: This program runs the matlabphp.c program on the web, displays the
results to the user, and stores them in a MySQL table.

5. time_extraction.m: This MATLAB program extracts the time and date from a single
hive image and displays the results

6. indepent_change_detection_with_n_images.m: This program makes the background
from 11 recent images, applies the change detection to the current image and
background, and displays the results.

7. beeproject.sh: Bash script that converts the video from analog input to image frames at
a desirable time interval between consecutive image frames.

8. counting.m: This programs counts the number of white segments in a binary image.
9. isPointInsidePolygon.m: This program checks whether a given point in the image is in

a polygon. The polygon is specified by the coordinates of its vertices.
10. snrCalculator: This program computes the value of SNR and entropy for a given image

and its corresponding background.

91

Vita

Mr. Ahmad Ghadiri was born in the historical city of Esfahan, Iran. After finishing high

school in his hometown, he pursued his Bachelor’s degree in the field of Electrical

Engineering. After graduating from Isfahan University of Technology with a degree in

Electrical Engineering in 2010, he was hired as a product manager in a Value Added Service

(VAS) Company and worked there for one year. In Spring 2011, he started his graduate studies

at Appalachian State University, Boone, NC, USA. During the course of his graduate studies

at Appalachian State University he was involved with the Summer Ventures Program as an

instructor of the Visual Image Processing (VIP) research course for two years. He received his

Master of Science Degree in August 2013.

